Tìm giá trị nhỏ nhất của biểu thức P =( x + 2021)mũ2 + ( x + 2022)mũ2

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

Đặt \(x+2021=a\)

\(\Rightarrow2P=2a^2+2\left(a+1\right)^2=4a^2+4a+2=\left(2a+1\right)^2+1\ge1\)

\(\Leftrightarrow P\ge\frac{1}{2}\)

\(\left(x+1\right)\left(x+2\right)>=\left(x-2\right)^2-1\)

\(\Leftrightarrow x^2+3x+2>=x^2-4x+4-1\)

=>3x+2>=-4x+3

=>7x>=1

hay x>=1/7

17 tháng 5 2021

Đặt A = 5x2 + 2y2 + 4xy - 2x + 4y + 2022

= (2x2 + 4xy + 2y2) + 4(x + y) + 2 + (3x2 - 6x + 3) + 2017

= 2(x + y)2 + 4(x + y) + 2 + 3(x - 1)2 + 2017

= 2(x + y + 1)2 + 3(x - 1)2 + 2017 \(\ge\)2017

=> Min A = 2017

17 tháng 5 2021

\(5x^2+2y^2+4xy-2x+4y+2022\)

\(=\left(4x^2+4x+y^2\right)+\left(y^2+4y+4\right)+\left(x^2-2x+1\right)+2017\)

\(=\left(2x+y\right)^2+\left(y+2\right)^2+\left(x-1\right)^2+2017\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\y+2=0\\x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy \(Min_A=2017\Leftrightarrow x=1;y=-2\)

6 tháng 9 2017

A=x^2+5x+7

A=x^2+2.x.5/2+25/4+3/4

A=(x+5/2)^2+3/4>= 3/4

Vậy Min A=3/4 <=> x=-5/2

6 tháng 9 2017

  ấ ở đây nhé !    

Mình có làm bài tìm giá trị lớn nhất trong đây rùi nhé ! 

1 tháng 12 2021

chx chắc là A đâu, bạn cho mik bt dấu "=" xảy ra khi nào

22 tháng 6 2021

Bài 1 : 

a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18-2\right)\)

\(=6x^2+19x-7-6x^2-x+5-16=18x-18\)

Vậy biểu thức phụ thuộc biến x 

b, \(\left(x-2\right)\left(x+1\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)

\(=\left(x^2-x-2\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)

\(=2x^3+x^2-2x^2-1-4x-2-2x^3+2x+5x+1=-x^2-2+3x\)

Vậy biểu thức phụ thuộc biến x 

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)