Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Vì \(\sqrt{-x^2+2x+7}\ge0\Rightarrow A\ge\frac{3}{2}\) Khi đó: -x2 + 2x + 7 = 0 . Giải denta ta được 2 nghiệm
\(\orbr{\begin{cases}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{cases}}\) . Vậy MinA = 3/2 khi \(\orbr{\begin{cases}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{cases}}\)
\(p=\sqrt{\left(\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\frac{9}{2}}+\sqrt{\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{19}{2}}\ge\sqrt{\left(\frac{3}{\sqrt{2}}-\sqrt{2}x+\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\left(\frac{3+\sqrt{19}}{\sqrt{2}}\right)^2}=\sqrt{2+\frac{\left(3+\sqrt{19}\right)}{2}^2}\)
bạn Nguyễn Hải Đăng ơi đó là công thức gì vậy? cho mình xin cái công thức tổng quát với mình chưa hiểu lắm
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4
√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2.
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1.
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3.
___Dấu bằng xảy ra khi và chỉ khi x = - 1.
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3
ai tích mình mình sẽ tích lại
Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)
Dấu "=" bạn tự xét nhé!
\(P=2x^2+\dfrac{7}{2x^2}\)
Áp dụng Bất đẳng thức Cauchy cho 2 cặp số dương \(\left(2x^2;\dfrac{7}{2x^2}\right)\)
\(P=2x^2+\dfrac{7}{2x^2}\ge2\sqrt[]{7}\)
Dấu "=" xảy ra khi và chỉ khi
\(\Leftrightarrow2x^2=\dfrac{7}{2x^2}\)
\(\Leftrightarrow4x^4=7\left(x\ne0\right)\)
\(\Leftrightarrow x^4=\dfrac{7}{4}\)
\(\Leftrightarrow x=\pm\sqrt[4]{\dfrac{7}{4}}\)
Vậy \(GTNN\left(P\right)=2\sqrt[]{7}\left(tại.x=\pm\sqrt[4]{\dfrac{7}{4}}\right)\)