Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |x-2006| \(\ge\) 0 với mọi x
(x-y+1)^2 \(\ge\)0 với mọi x;y
=>|x-2006|+(x-y+1)^2+2008 \(\ge\) 2008 với mọi x;y
Dấu "=" sảy ra khi x-2006=0 => x=2006
x-y+1=0 =>2006-y+1=0 => 2006-y=-1 => y=2006+1=2007
Vậy Min M=2008 tại x=2006 và y=2007
Cho mk sửa lại đề nha!
Tìm giá trị nhỏ nhất của biểu thức:
A = | x - 2008 | + | x - 1|
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
mk ko viết lại đề đâu nha làm luôn đấy
M=|3-x|+|x-7|+|x+2018|
\(\le\left|3-x+x+2018\right|+\)\(\left|x-7\right|\)
=|2021|+|x-7|
Dấu "=" xảy ra khi (3-x)(x+2018)\(\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-x\ge0\\x+2018\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2018\end{cases}\Rightarrow3\le x\le2018}\)
Do |x-7|\(\ge0\) nên GTNN của M=2021 khi và chỉ khi x-7=0 => x=7(t/m \(3\le x\le2018\))
vậy GTNN của M=2021 khi x=7
tk cho mk nha bn
***** Chúc bạn học giỏi*****
Mik cũng làm được kết quả như bạn!! Hihi. Dù sao cũng cảm ơn bạn nhiều nha...