Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
Ta có:
\(x^2\ge 0=>x^2-9\ge -9\)
\(|y-2|\ge 0\)
\(=>\left(x^2-9\right)+|y-2|\ge -9\)
\(=>\left(x^2-9\right)+|y-2|+10\ge 1\)
Dấu '=" xảy ra \(\orbr{\begin{cases}x^2-9=-9\\y+2=0\end{cases}}=>\orbr{\begin{cases}x^2=0\\y=0-2\end{cases}=>\orbr{\begin{cases}x=0\\y=-2\end{cases}}}\)
Vậy giá trị nhỏ nhất của \(\left(x^2-9\right)+|y-2|+10\) là-9 với \( x=0; y=-2\)
Có (x^2-9)+10=x^2+1 >= 1
Và |y-2| >=0
Nên: (x^2-9)+|y-2|+10 >= 1
Dấu "=" xảy ra khi x^2+1=1 => x=0
y-2=0 => y=2
Vậy Biểu thức đạt giá trị nhỏ nhất Min=1 khi x=0 và y=2
M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021
= |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021
= |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021
= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021
Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)
=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)
Khi (x - 2020)(x2 - 16) = 0
=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)
Khi 2(x - 4)2 = 0
=> x - 4 = 0
=> x = 4 (2)
Từ (1) (2) => x = 4
Vậy Min M = 2021 <=> x = 4
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
GTNN của M =2014
dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=2y-10\\y=8\end{cases}}\)
\(\hept{\begin{cases}x=15\\y=8\end{cases}}\)
Vì \(|x-2y+10|+\left(y-8\right)^2\ge0\)\(\forall x,y\)
\(\Rightarrow M\ge2014\)\(\Rightarrow minM=2014\Leftrightarrow\hept{\begin{cases}x-2y+10=0\\y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-16=-10\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Vậy \(minM=2014\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)