K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Ta có:  x 2 ≥ 0 ;   3 x ≥ 0   ∀ x ⇒ g x = x 2 + 3 x ≥ 0   ∀ x

Do đó, giá trị nhỏ nhất của biểu thức g(x) là 0 khi x= 0.

27 tháng 11 2022

a:

\(A=\left|x-2013\right|+\left|2014-x\right|>=\left|x-2013+2014-x\right|=1\)

Dấu = xảy ra khi 2013<=x<=2014

\(B=\left|x-123\right|+\left|456-x\right|>=\left|x-123+456-x\right|=333\)

Dấu = xảy ra khi 123<=x<=456

b: \(\left|x\right|+2004>=2004\)

=>A<=2013/2004

Dấu = xảy ra khi x=0

\(B=\dfrac{\left|x\right|+2002+1}{\left|x\right|+2002}=1+\dfrac{1}{\left|x\right|+2002}< =1+\dfrac{1}{2002}=\dfrac{2003}{2002}\)

Dấu = xảy ra khi x=0

11 tháng 10 2016

Ở phần 3n-5 tức là 3/n-5

18 tháng 7 2017

a, Biến đổi ta được E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, Ta có E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) = \(1+\dfrac{4}{\sqrt{x}-3}\) .

. Nếu x không là số chính phương thì \(\sqrt{x}\) là số vô tỉ . Suy ra E là số vô tỉ ( loại )

. Nếu x là số chính phươn thì \(\sqrt{x}\) là số nguyên nên để E có giá trị nguyên thì \(4⋮\left(\sqrt{x}-3\right)\) .

\(\sqrt{x}-3\ge-3\) nên \(\left(\sqrt{x}-3\right)\in\left\{-2;-1;1;2;4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

Kết hợp với ĐKXĐ ta được x = 1 ; 16 ; 25 ; 49

26 tháng 11 2016

H = x(x+1)(x+2)(x+3)

=x(x+3)(x+1)(x+2)

=(x2+3x)(x2+3x+2)

Đặt t=x2+3x ta có:

t(t+2)=t2-2t+1-1=(t-1)2-1\(\ge1\)

Dấu = khi \(t=1\Rightarrow x^2+3x=1\Rightarrow\)\(x_{1,2}=\frac{-3\pm\sqrt{13}}{2}\)

26 tháng 11 2016

Ta có: H = x(x+3)(x+1)(x+2) H = (x2+ 3x)(x2 + 3x +2) H = (x2+3x)2 + 2(x2+3x) H = (x2+3x)2 + 2(x2+3x)+1 – 1 H = (x2 + 3x +1)2 – 1 ⇔H ≥ - 1 , Dấu ‘ = ’ xảy ra khi x2 + 3x +1 = 0 ⇔x =-3+căn5 chia 2 Vậy giá trị nhỏ nhất của H là -1 khi x =-3+căn5 chia 2

12 tháng 8 2018

câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)

\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)

\(\Rightarrow\dfrac{1}{16}\le M\le61\)

\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)

câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)

\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)

\(\Rightarrow3\le M\le7\)

\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)

câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)

\(\Rightarrow M_{min}=-6\) khi \(x=2\)

12 tháng 8 2018

4) điều kiện xác định \(-6\le x\le10\)

ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)

áp dụng bunhiacopxki dạng căn ta có :

\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)

\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)

\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)

\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)

\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự

NV
6 tháng 7 2020

\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)

\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)

\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)

\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)

\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)

\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)

\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)

\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)

\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)

\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)

12 tháng 5 2016

Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị  của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :

\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)

Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)

Thay vào (1), ta được : 

\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)

Hay u và v là nghiệm của phương trình :

\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)

\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\)  (2)

Hệ (1) có nghiệm x, y thỏa mãn điều kiện  \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :

\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)

\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)

Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)

Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)

           Min K = \(9+3\sqrt{15}\)