Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge0\)
\(y=x-4\sqrt{x}-1=\left(\sqrt{x}\right)^2-4\sqrt{x}+4-5=\left(\sqrt{x}-2\right)^2-5\ge-5\)
Đẳng thức xảy ra khi x = 4
ĐKXĐ : \(x\ge0\)
Ta có :
\(y=x-4\sqrt{x}-1\)
\(\Leftrightarrow y=x-2.2\sqrt{x}+4-5\)
\(\Leftrightarrow y=\left(\sqrt{x}-2\right)^2-5\ge-5\)
Dấu bằng xảy ra
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
Vậy giá trị nhỏ nhất của biểu thức y = -5 \(\Leftrightarrow x=4\)
\(x^2+x\sqrt{3}+1\)
\(=x^2+2.x.\frac{\sqrt{3}}{2}+\left(\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
\(=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{\sqrt{3}}{2}\)
Đặt \(A=x^2+x\sqrt{3}+1\)
\(\Rightarrow A=x^2+x\sqrt{3}+\frac{3}{4}+\frac{1}{4}\)
\(\Rightarrow A=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\forall x\Rightarrow\)\(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Vậy \(A_{min}=\frac{1}{4}\Leftrightarrow x+\frac{\sqrt{3}}{2}=0\Leftrightarrow x=-\frac{\sqrt{3}}{2}\)
a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x=1/4
\(A=\left(x-2\sqrt{xy}+y\right)\)\(-\left(2\sqrt{x}-2\sqrt{y}\right)\)\(+1\)\(+\left(2y-2\sqrt{y}+\frac{1}{2}\right)\)\(-\frac{1}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)\)\(+1\)\(+2\left(y-\sqrt{y}+\frac{1}{4}\right)+\frac{1}{2}\)
\(\left(\sqrt{x}-\sqrt{y}-1\right)^2\)\(+2\left(\sqrt{y}-\frac{1}{2}\right)^2+\frac{1}{2}\)lớn hơn hoặc bằng \(\frac{1}{2}\)
A min \(=\frac{1}{2}\)<=>\(\left(\sqrt{x}-\sqrt{y}-1\right)^2\)=0, \(\left(\sqrt{y}-\frac{1}{2}\right)^2=0\)<=> \(x=\frac{9}{4};y=\frac{1}{4}\).
\(A=\frac{\sqrt{x}-13}{\sqrt{x}+3}=\frac{-\frac{13}{3}\sqrt{x}-13+\frac{16}{3}\sqrt{x}}{\sqrt{x}+3}=\frac{-\frac{13}{3}\left(\sqrt{x}+3\right)+\frac{16}{3}\sqrt{x}}{\sqrt{x}+3}\)
\(=-\frac{13}{3}+\frac{\frac{16}{3}\sqrt{x}}{\sqrt{x}+3}=-\frac{13}{3}+\frac{16\sqrt{x}}{3\sqrt{x}+9}\ge-\frac{13}{3}\)có GTNN là \(-\frac{13}{3}\)
Lời giải:
Ta có: \(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Ta thấy: \(\sqrt{x}\geq 0, \forall x\geq 0\Rightarrow \sqrt{x}+1\geq 1\)
\(\Rightarrow \frac{2}{\sqrt{x}+1}\leq \frac{2}{1}=2\)
\(\Rightarrow 1-\frac{2}{\sqrt{x}+1}\geq 1-2=-1\)
Vậy GTNN của biểu thức là $-1$ khi \(\sqrt{x}=0\Leftrightarrow x=0\)