\(\dfrac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3

28 tháng 12 2019

\(D=\left|x-2019\right|+\left|x-2020\right|\)

Ta có: \(\left|x-2020\right|=\left|2020-x\right|\)

\(\Rightarrow\left|x-2019\right|+\left|x-2020\right|=\left|x-2019\right|+\left|2020-x\right|\)

\(\Rightarrow D=\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|\)

\(\Rightarrow D\ge1\)

Dấu " = " xảy ra khi và chỉ khi:

\(\left(x-2019\right)\left(2020-9\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2019\ge0\\2020-9\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2019\le0\\2020-x\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2019\\x\ge2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2029\\x\le2020\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=2020\)

Vậy ................

22 tháng 5 2021

M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021

=  |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021

=  |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021

= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021 

Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)

=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)

Khi (x - 2020)(x2 - 16) = 0 

=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)

Khi 2(x - 4)2 = 0

=> x -  4 = 0

=> x = 4 (2)

Từ (1) (2) => x = 4 

Vậy Min M = 2021 <=> x = 4

12 tháng 1 2021

Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất

=> |x - 2019| + 2021 nhỏ nhất

Ta có: \(\left|x-2019\right|\ge0\)

\(\Rightarrow\left|x-2019\right|+2021\ge2021\)

Dấu "=" xảy ra khi x - 2019 = 0

=> x = 2019

\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)

Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).

11 tháng 4 2018

\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=1-\dfrac{1}{\left|x-2017\right|+2019}\)

\(\left|x-2017\right|\ge0\Rightarrow\left|x-2017\right|+2019\ge2019\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\)

\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2019}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

Dấu "=" xảy ra <=> \(\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{Min}=\dfrac{2018}{2019}\) khi x = 2017

11 tháng 4 2018

cảm ơn bn nhiều