K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2

8 tháng 6 2018

a) A = x4 + x2 + 2

Do : x4 ≥ 0 ∀x

x2 ≥ 0 ∀x

⇒ x4 + x2 + 2 ≥ 2

⇒ AMin = 2 ⇔ x = 0

b) B = 3x2 - 21x + 15

B = 3( x2 - \(2\dfrac{7}{2}x+\dfrac{49}{4}\) ) + 15 - \(\dfrac{147}{4}\)

B = 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\)

Do : 3( x - \(\dfrac{7}{2}\))2 ≥ 0 ∀x

⇒ 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\) ≥ - \(\dfrac{87}{4}\)

⇒ BMin = - \(\dfrac{87}{4}\) ⇔ x = \(\dfrac{7}{2}\)

c) C = x2 - 4xy + 5y2 + 10x - 22y + 28

C = x2 - 4xy + 4y2 + 10x - 20y + 25 + y2 - 2y + 1 + 2

C = ( x - 2y)2 + 10( x - 2y) + 25 + ( y - 1)2 + 2

C = ( x - 2y + 5)2 + ( y - 1)2 + 2

Do : ( x - 2y + 5)2 ≥ 0 ∀xy

( y - 1)2 ≥ 0 ∀y

⇒ ( x - 2y + 5)2 + ( y - 1)2 + 2 ≥ 2

⇒ CMin = 2 ⇔ x = - 3 ; y = 1

1 tháng 10 2017

max A= -201 tại x=10(câu này dễ)

B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^

25 tháng 8 2017

a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)

\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2

b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)

c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)

\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)

d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)

\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)

\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)

Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)

e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)

25 tháng 8 2017

bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v

10 tháng 11 2019

bạn có thể tham khảo ở đây nhé

https://hoc24.vn/hoi-dap/question/394806.html

30 tháng 10 2016

hjvbm 

28 tháng 8 2020

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)

Đẳng thức khó tìm quá huhu