Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(x+z\right)\sqrt{\left(x+y\right)\left(y+z\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}}{z}.\)
Áp dụng bất đẳng thức Bunhiacopski ta có
\(\left(x+y\right)\left(x+z\right)\ge\left(x+\sqrt{yz}\right)^2\)
Tương tự \(\left(x+y\right)\left(y+z\right)\ge\left(y+\sqrt{xz}\right)^2\)
\(\left(y+z\right)\left(x+z\right)\ge\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow A\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}+\frac{\left(x+z\right)\left(y+\sqrt{xz}\right)}{y}+\frac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\)
hay \(A\ge2\left(x+y+z\right)+\frac{\sqrt{yz}\left(y+z\right)}{x}+\frac{\left(x+z\right)\sqrt{xz}}{y}+\frac{\left(x+y\right)\sqrt{xy}}{z}\)
\(\Leftrightarrow A\ge2\left(x+y+z\right)+\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)
Đặt \(M=\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)
Ta có \(\left(x,y,z\right)\rightarrow\left(a^2,b^2,c^2\right)\)
Khi đó \(M=\frac{a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)}{a^2b^2c^2}\)
ÁP DỤNG BĐT AM-GM ta có
\(a^5b^3+a^3b^5\ge2\sqrt{a^8b^8}=2a^4b^4\)
\(b^5c^3+b^3c^5\ge2\sqrt{b^8c^8}=2b^4c^4\)
\(a^5c^3+a^3c^5\ge2\sqrt{a^8c^8}=2a^4c^4\)
Cộng từng vế ta được
\(a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)\ge2\left(a^4b^4+b^4c^4+c^4a^4\right)\)
\(\ge2a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow M\ge2\left(a^2+b^2+c^2\right)=2\left(x+y+z\right)\)
\(\Rightarrow A\ge4\left(x+y+z\right)=4\sqrt{2019}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2019}}{3}\)
Bài này cô cũng nghĩ là dùng phương pháp toa độ, chuyển qua hình học giải tích Oxy để giải.
Cô làm như sau:
Từ biểu thức P ta nghĩ đến công thức tính khoảng cách giữa hai điểm. Từ đó ta đặt \(A\left(-1;1\right);B\left(1;-1\right);C\left(-2;-2\right)\) và \(D\left(x;y\right)\). Khi đó ta thấy ngay \(P\left(x;y\right)=DA+DB+DC\)
Ta vẽ các điểm trên trục tọa độ:
?o?n th?ng f: ?o?n th?ng [A, C] ?o?n th?ng g: ?o?n th?ng [A, B] ?o?n th?ng h: ?o?n th?ng [C, B] ?o?n th?ng i: ?o?n th?ng [C, O] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [D, B] A = (-1, 1) A = (-1, 1) A = (-1, 1) B = (1.06, -1.14) B = (1.06, -1.14) B = (1.06, -1.14) C = (-2, -2) C = (-2, -2) C = (-2, -2) ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i
Vậy điểm D cần tìm là điểm tạo với các cạnh tam giác góc 120o. (Để hiểu rõ thêm e có thể đọc về điểm Toricenli của tam giác ABC). Do tam giác ABC cân tại C nên D thuộc CO, nói cách khác xD = yD.
Do \(\widehat{ADB}=120^o\Rightarrow\widehat{ADO}=60^o.\) Vậy thì \(tan60^o=\sqrt{3}=\frac{OA}{DO}\)
Do \(OA=\sqrt{2}\Rightarrow DO=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}\)
Vậy \(\sqrt{x_D^2+y_D^2}=\sqrt{2y_D^2}=\sqrt{\frac{2}{3}}\Rightarrow\left|x_D\right|=\left|y_D\right|=\frac{1}{\sqrt{3}}\). Từ hình vẽ ta có: \(x_D=y_D=-\frac{1}{\sqrt{3}}.\)
Vậy \(P\left(x;y\right)=DA+DB+DC=\sqrt{\left(-\frac{1}{\sqrt{3}}+1\right)^2+\left(-\frac{1}{\sqrt{3}}-1\right)^2}\)
\(+\sqrt{\left(-\frac{1}{\sqrt{3}}-1\right)^2+\left(-\frac{1}{\sqrt{3}}+1\right)^2}+\sqrt{\left(-\frac{1}{\sqrt{3}}+2\right)^2+\left(-\frac{1}{\sqrt{3}}+2\right)^2}\)
\(=\sqrt{6}+2\sqrt{2}.\)
Vậy min P(x;y) = \(\sqrt{6}+2\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{3}}.\)
Ở giữa là nhân hay cộng vậy bạn.
Nếu là nhân thì min bằng 0 vì đây là tích 2 số không âm.
Nếu là cộng: \(A=\left|x+2011\right|+\left|2012-x\right|\ge\left|2011+2012\right|=4023\)
và đẳng thức xảy ra, chẳng hạn khi \(x=2012\)
Đề không rõ ràng này tốt nhất thôi A à.
tý nữa lại sủa, tẹo nữa keo nhầm, kết luận làm được rồi không phải giải nữa.
A mới đưa ra được (.);(+) còn chia(/) và (-) nữa
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
Cách của mình dài ,bạn nào có cách khác ngắn gọn hơn thì chỉ cho mình với ạ. Cảm ơn
Trước hết ta chứng minh BĐT phụ sau: \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}.\)(*)
Thật vậy: \(ax+by\le\sqrt{\left(ax+by\right)^2}\le\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\)(BĐT bunhiacopxi)
\(\Leftrightarrow a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2\left(ax+by\right)\)
\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)
\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\). BĐT đã được chứng minh
Xét : \(\left(x+\sqrt{1+x^2}\right)\left(x-\sqrt{1+x^2}\right)=x^2-\left(1+x^2\right)=-1.\)
Theo giả thết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)
\(\Rightarrow2018\left(x-\sqrt{1+x^2}\right)=-\left(y+\sqrt{1+y^2}\right).\)
\(\Leftrightarrow2018x+y=2018\sqrt{1+x^2}-\sqrt{1+y^2}.\)(1)
Tương tự:
Xét:\(\left(y+\sqrt{1+y^2}\right)\left(y-\sqrt{1+y^2}\right)=y^2-\left(1+y^2\right)=-1\)
Theo giả thiết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)
\(\Rightarrow2018\left(y-\sqrt{1+y^2}\right)=-\left(x+\sqrt{1+x^2}\right)\)
\(\Leftrightarrow x+2018y=-\sqrt{1+x^2}+2018\sqrt{1+y^2}\)(2)
Cộng các vế của (1) và (2) lại ta được
\(2019\left(x+y\right)=2017\left(\sqrt{1+x^2}+\sqrt{1+y^2}\right)\)
Khi đó áp dụng bất đẳng thức (*) ta có;
\(2019\left(x+y\right)=2017\left(\sqrt{1^2+x^2}+\sqrt{1^2+y^2}\right)\ge2017\left(\sqrt{\left(1+1\right)^2+\left(x+y\right)^2}\right)\)
\(\Rightarrow2019\left(x+y\right)\ge2017\sqrt{4+\left(x+y\right)^2}\)
Đặt \(x+y=a>0\)ta có;
\(2019a\ge2017\sqrt{4+a^2}\Leftrightarrow2019^2a^2\ge2017^2a^2+2017^2.4\)
\(\Leftrightarrow\left(2019^2-2017^2\right)a^2\ge\left(2017.2\right)^2\Leftrightarrow a^2\ge\frac{2017^2.2.2}{2.4036}\Leftrightarrow a^2\ge\frac{2017^2}{2018}\)
\(\Rightarrow a\ge\frac{2017}{\sqrt{2018}}\Rightarrow x+y\ge\frac{2017}{\sqrt{2018}}.\)
Vậy giá trị nhỏ nhất của biểu thức P=x+y là \(\frac{2017}{\sqrt{2018}}\)
Dấu '=' xảy ra khi \(x=y=\frac{2017}{2\sqrt{2018}}.\)
bn đào thu hà k cần cm bdt phụ đâu đấy là bdt mincopski đc dùng luôn
C = ..................................................................... ( giống cái đề bài )
= ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )
= ( x + x + x ) + ( 2017 + 2018 + 2019 )
= 3x + 6054
Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0
( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0
( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0
SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0
dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018
Vậy C có GTNN là 0 khi x = - 2018