Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khó quá
Chịu thoy
Nếu mk lm xng con nay thì sang năm vẫn chưa xng đôu
...army
(x-2)(x-5)(x^2-7x-10) = (x^2-7x+10)(x^2-7x-10) = (x^2-7x)^2-100 = x^2(x-7)^2-100
x^2(x-7)^2 là 1 số dương, vậy min của biểu thức trên là (-100)
GTNN:
\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)
\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2
GTLL:
\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)
\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)
\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)
Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6
nha . cảm ơn . chúc bạn học tốt
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
A = x2 - 7x + 11
<=> A = x2 - 7x + (3,5)2 - 1,25
<=> A = (x - 3,5)2 - 1,25
Do: (x - 3,5)2 lớn hơn hoặc = 0
=> A lớn hơn hoặc bằng -1,25
Dấu "=" xảy ra khi: (x - 3,5)2 = 0 <=> x = 3,5
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
\(VT=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\left(x-y\right)^2\left(x+y\right)^2=VP\)
VT\(=\left(x^2+y^2-2xy\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)
Ta có: x^2-7x+11
=x^2-7x+12,25-1,25
=x^2-2.3,5x+3,5^2-1,25
=(x-3,5)^5-1,25
Ma: (x-3,5)^2\(\ge\)0
\(\Rightarrow\)(x-3,5)^2-1,25 \(\ge\)-1,25
Vậy Min của A là: -1,25
Dấu "=" xảy ra khi: x-3,5=0 \(\Rightarrow\) x=3,5
<=> A = x2 - 7x + (3,5)2 - 1,25
<=> A = (x - 3,5)2 - 1,25
Do: (x - 3,5)2 \(\ge\)0 <=> A \(\ge\)-1,25
Dấu "=" xảy ra khi và chỉ khi: (x - 3,5)2 = 0 <=> x = 3,5
Vậy MinA = -1,25 khi và chỉ khi x = 3,5
A=(x-2)(x-5)(x2-7x-10)=(x2-7x+10)(x2-7x-10)=(x2-7x)2-102=(x2-7x)2-100\(\ge\)-100
Dấu "=" xảy ra khi x=0 hoặc x=7
Vậy GTNN của A là -100 tại x=0 hoặc x=7
theo Minh Triều là đúng mk chắc 100%