Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=x2-2x+1+x2=2(x2+2.\(\frac{1}{2}\)x+\(\frac{1}{2}\))= 2( x2+2.\(\frac{1}{2}\)x +\(\frac{1}{4}\)+\(\frac{1}{4}\))
=2 ( x+\(\frac{1}{2}\))2 +\(\frac{1}{2}\)\(\ge\)\(\frac{1}{2}\)
Vậy Min B =1/2 <=> x=-1/2
Ta có: B = (x - 1)2 + x2 = x2 - 2x + 1 + x2 = 2x2 - 2x + 1 = 2(x2 - x + 1/4) + 1/2 = 2(x - 1/2)2 + 1/2
Ta luôn có : (x - 1/2)2 \(\ge\)0 \(\forall\)x => 2(x - 1/2)2 \(\ge\) 0 \(\forall\)x
=> 2(x - 1/2)2 + 1/2 \(\ge\) 1/2 \(\forall\)x
hay B \(\ge\) 1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Bmin = 1/2 tại x = 1/2
Ta có: \(x^2+4x+9=\left(x^2+2.x.2+2^2\right)+5\)
\(=\left(x+2\right)^2+5\)
Vì \(\left(x+2\right)^2\ge0\) với mọi x
=> \(\left(x+2\right)^2+5\)\(\ge5\)
hay: \(x^2+4x+9\)\(\ge5\)
Dấu "=" xảy ra <=> x = -2
Vậy: Min \(x^2+4x+9\)= 5 <=> x = -2
\(x^2+4x+9=\left(x^2+4x+4\right)+5\)
\(=\left(x+2\right)^2+5\ge5\)
(Dấu "="\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\))
Đặt \(A=x^2+4x+9\)
\(\Rightarrow A=x^2+4x+4+5=\left(x+2\right)^2+5\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)
Vậy \(minA=5\Leftrightarrow x=-2\)
\(H=x^2+4x+9\)
\(H=x^2+4x+4+5\)
\(H=\left(x+2\right)^2+5\ge5\) vì \(\left(x+2\right)^2\ge0,\forall x\inℝ\)
\(\Rightarrow Min_A=5\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: \(Min_A=5\Leftrightarrow x=-2\)
a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)
\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)
Giải phương trình :
\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)
\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)
\(\Rightarrow40+12-8x\ge5x-15-20x\)
\(\Rightarrow7x=67\)
\(\Rightarrow x\ge\frac{67}{7}\)
b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)
\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)
\(\Rightarrow6x+3-2x+4>-54\)
\(\Rightarrow4x>-61\)
\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)
Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)
\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)
\(\Rightarrow12x-3x+9\ge36-x+3\)
\(\Rightarrow10x\ge30\)
\(\Rightarrow x\ge3\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)
Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Ta có :
A = \(\sqrt{x}+x\)
\(=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\)
Ta có : \(\sqrt{x}\ge0\)\(\Rightarrow\)\(\left(\sqrt{x}+\frac{1}{2}\right)^2\ge\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = 0
A = \(\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = 0
Vậy giá trị nhỏ nhất của A = 0 \(\Leftrightarrow\)x = 0
Giải
Ta có :\(A=\sqrt{x}+x\)
\(\Leftrightarrow A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{1}{4}\)
\(\Leftrightarrow A=\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\)
Ta có : \(\sqrt{x}\ge0\Rightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2\ge4\)
\(\Rightarrow A=\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = 0
Vậy giá trị nhỏ nhất của A là 0