Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+\left|x-2016\right|\ge2\)
Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
\(A=\left|2014-x\right|+\left|2015-x\right|+2016-x\)
Ta xét 4 trường hợp xảy ra:
TH1: \(x< 2014\)
\(A=2014-x+2015-x+2016-x\)
\(=6045-3x>3\) ( Vì \(x< 2014\) ) (1)
TH2: \(2014\le x\le2015\)
\(A=x-2014+2015-x+2016-x\)
\(=2017-x>2\) ( Vì \(x< 2015\) ) (2)
TH3: \(2015\le x< 2016\)
\(A=x-2014+x-2015+2016-x\)
\(=x-2013\ge2\) ( Vì \(x\ge2015\) ) (3)
TH4: \(x< 2016\)
\(A=x-2014+x-2015+x-2016\)
\(=3x-6045>3\) ( Vì \(x>2016\) ) (4)
Từ (1), (2), (3) và (4) \(\Rightarrow A\ge2\)
Vậy A nhỏ nhất =2 khi x=2015.