K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
16 tháng 12 2020

Ta có hai trường hợp như sau :

TH1

\(x-2016\ge0\Leftrightarrow x\ge2016\) thì \(A=x-2016+x-1=2x-2017\ge2.2016-2017=2015\)

TH2

\(x-2016\le0\Leftrightarrow x\le2016\) thì \(A=2016-x+x-1=2015\)

vì vậy GTNN của A=2015

dấu bằng xảy ra khi \(x\le2016\)

14 tháng 4 2018

Ta có \(\left|x+1\right|\ge0\)với mọi giá trị của x

và \(\left|x-2018\right|\ge0\)với mọi giá trị của x

=> \(\left|x+1\right|+\left|x-2018\right|\ge0\)với mọi giá trị của x

Vậy GTNN của A là 0.

14 tháng 4 2018

Gtnn của A  là 2017

13 tháng 3 2019

a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

*TH1: \(x< 2016\):

\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)

*TH2: \(2016\le x< 2017\):

\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)

*TH3: \(2017\le x< 2018\):

\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)

*TH4: \(x\ge2018\):

\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)

Vậy GTNN của P là 2 khi x = 2017.

b) \(x-2xy+y-3=0\)

\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)

2x-15-51-1
1-2y1-15-5
x3-210
y01-23

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

22 tháng 9 2016

a) do /x-2/ lớn hơn hoặc bằng 0 với mọi x nên dấu bằng xảy ra khi x-2=0<=>x=2

vậy minA=0 khi x=2

các câu còn lại tương tự

11 tháng 10 2017

Ta có: \(A=\left|x-1999\right|+\left|x-9\right|=\left|1999-x\right|+\left|x-9\right|\ge\left|1999-x+x-9\right|=1990\)

Dấu "=" xảy ra khi \(\left(1999-x\right)\left(x-9\right)\ge0\Leftrightarrow9\le x\le1999\)

Vậy MinA = 1990 khi \(9\le x\le1999\)

18 tháng 12 2022

\(A=\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\)

\(A\ge\left|1-x+x+3\right|=4\)

Vậy giá trị nhỏ nhất của biểu thức A là 4.