Tìm giá trị nhỏ nhất của biểu thức A =  m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

Đáp án đúng : C

Dấu “=” xảy ra  ⇔ m + 1 4 − m ≥ 0

⇔ − 1 ≤ m ≤ 4

Vậy GTNN của A là 5 khi  − 1 ≤ m ≤ 4

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

24 tháng 7 2017

a) A = \(\sqrt{-x^2+x+\dfrac{3}{4}}=\sqrt{1-\left(x-\dfrac{1}{2}\right)^2}\le\sqrt{1}=1\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy max A = 1 (khi và chỉ khi x = \(\dfrac{1}{2}\))

b) B = \(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\) (dấu "=" xảy ra \(\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=1;x=-\dfrac{1}{2}\)).

Vậy min B = 3 (khi và chỉ khi x = 1 hoặc x = \(-\dfrac{1}{2}\))

c) C = \(\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\);

C \(\ge\left|2-5x+5x\right|=\left|2\right|=2\) (dấu "=" xảy ra \(\Leftrightarrow\left(2-5x\right).5x\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-5x\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\2-5x\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le x\le\dfrac{2}{5}\)).

Vậy min C = 2 (khi và chỉ khi \(0\le x\le\dfrac{2}{5}\))

18 tháng 6 2017

2.

A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)

\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}-1-\sqrt{3}-1\)

\(=-2\)

B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)

\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)

\(=\sqrt{5-2\sqrt{2}-2}\)

\(=\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)

\(=\sqrt{2}-1\)

1 tháng 2 2018

a) Ta có \(Q=\frac{x-9}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

Áp dụng BĐT cô-si, ta có \(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge10\Rightarrow Q\ge10-6=4\)

Dấu = xảy ra <=> x=4

b)Tá có \(M=x^2+4y^2+1+4xy+2x+2y+y^2-2y+1+10\)

=\(\left(x+2y+1\right)^2+\left(y-1\right)^2+10\ge10\)

dấu = xảy ra <=> y=1 và x=-3

^_^

1 tháng 2 2018

giúp mình với mọi người ơi mình đang cần bài này gấp lắm

NV
22 tháng 6 2019

\(A=\sqrt{\left(x-4\right)^2+4}-12\ge\sqrt{4}-12=-10\)

\(\Rightarrow A_{min}=-10\) khi \(x=4\)

\(B=2\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}\ge2\sqrt{\frac{11}{4}}=\sqrt{11}\)

\(B_{min}=\sqrt{11}\) khi \(x=-\frac{3}{2}\)

\(C=\frac{3}{1+\sqrt{9-\left(x-1\right)^2}}\ge\frac{3}{1+\sqrt{9}}=\frac{3}{4}\) (để chặt chẽ thì cần tìm ĐKXĐ cho căn thức trước, bạn tự tìm)

Bài 2:

\(A=\sqrt{7-2x^2}\le\sqrt{7}\)

\(A_{max}=\sqrt{7}\) khi \(x=0\)

\(B=\sqrt{7-\left(2x+1\right)^2}+5\le\sqrt{7}+5\) (cần ĐKXĐ)

\(B_{max}=\sqrt{7}+5\) khi \(x=-\frac{1}{2}\)

\(C=7+\sqrt{1-\left(2x-1\right)^2}\le7+\sqrt{1}=8\) (cần tìm ĐKXĐ)

\(C_{max}=8\) khi \(x=\frac{1}{2}\)

23 tháng 12 2016

a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)

\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)

Đẳng thức xảy ra khi \(A.B\ge0\)

b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)

Vậy minM = 5 tại \(-2\le x\le3\)

c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)

Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)

Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)

Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)