\(\left|3y+15\right|\) + 2

b) B= (2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

a) a) Để Amin thì |3y+15|min

mà |3y+15| là giá trị tuyệt đối -> luôn luôn lớn hơn hoặc bằng 0

-> |3y+15|min = 0

-> 3y = -15

-> y = -5

Vậy GTNN của A=|3y+15| + 2 = 2

b) Để (2x + 2016 )2016min thì (2x+2016)min

mà 2x > 0, 2016 > 0 -> 2x+2016 sẽ lớn hơn hoặc bằng 0

-> (2x+2016)min=0

-> 2x = -2016

-> x = -1008

Vậy GTNN của B= (2x + 2016 )2016 = 0

 
28 tháng 11 2016

min là j vậy

 

7 tháng 8 2019

\(A=\left(5-x\right)^{2016}+|2y+6|-2015\)

Vì \(\left(5-x\right)^{2016}=[\left(5-x\right)^{1008}]^2\ge0,\forall x\)

\(|2y+6|\ge0,\forall y\)

nên \(A=\left(5-x\right)^{2016}+|2y+6|-2015\)\(\ge0+0-2015=2015,\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(5-x\right)^{2016}=0\\|2y+6|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5-x=0\\2y+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

Vậy GTNN của A bằng -2015 \(\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

\(B=\frac{-144}{\left(2x+1\right)^4+12}\)

Vì \(\left(2x+1\right)^4=[\left(2x+1\right)^2]^2\ge0,\forall x\)

nên \(\left(2x+1\right)^4+12\ge0+12=12,\forall x\)

\(\Rightarrow B=\frac{-144}{\left(2x+1\right)^4+12}\ge\frac{-144}{12}=-12,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^4=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của B bằng -12\(\Leftrightarrow x=-\frac{1}{2}\)

Chúc bạn học tốt ! Nguyen thi ngoc yen

cảm ơn bạn nha

9 tháng 5 2016

A=(2x-3)2+7

Vì (2x-3)2 \(\ge\) 0 với mọi x

=>(2x-3)2+7 \(\ge\) 7 với mọi x

=>AMin=7

Dấu "=" xảy ra<=>2x-3=0<=>x=3/2

B=15-|2x+1|

Vì |2x+1| \(\ge\) 0 với mọi x => -|2x+1| \(\le\) 0 với mọi x

=>15-|2x+1| \(\le\) 15 với mọi x

=>BMax=15

Dấu "=" xảy ra<=>2x+1=0<=>x=-1/2

\(C=\frac{6}{\left(3x+2\right)^2+18}\)

C lớn nhất <=> (3x+2)2+18 nhỏ nhất

Vì (3x+2)2+18 \(\ge\) 18 với mọi x

=>\(C\le\frac{6}{18}=\frac{1}{3}\)

=>CMax=1/3

Dấu "=" xảy ra <=> 3x+2=0<=>x=-2/3

D=(x2+2)2-21

Vì x2+2 \(\ge\) 2 với mọi x

=>(x2+2)2 \(\ge\) 22=4 với mọi x

=>(x2+2)2-21 \(\ge\) 4-21=-17 với mọi x

=>DMin=-17

Dấu "=" xảy ra<=>x=0

2 tháng 7 2019

a) Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(x-3=0\)

                                 \(\Rightarrow x=3\)

Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018

b)Vì \(\left|x-5\right|\ge0\)

\(\Rightarrow\left|x-5\right|+2016\ge2016\)

Dấu "=" xảy ra khi \(x-5=0\)

                                 \(\Rightarrow x=5\)

Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016

c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất

\(\Rightarrow x-3< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-3\le-1\)

Dấu "=" xảy ra khi \(x=-1+3=2\)

Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)

d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)

D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất

\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất

\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN

\(\Rightarrow x-5< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-5\le-1\)

Dấu "=" xảy ra khi \(x=-1+5=4\)

Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)

~Học tốt^^~

2 tháng 7 2019

Phần kết luận: Vậy với x=...... thì "biểu thức"...

em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16