Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: \(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi x = 3
Vậy AMin = 10 khi x = 3
câu b tương tự
Sửa đề:
A=/x+5/+10
Ta có: /x+5/>= 0 với mọi x>=0
=> A=/x+5/+10 >= 10
=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5
Vậy...
\(\text{a) }A=\left|x+5\right|+10\)
\(\text{Vì }\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+10\ge10\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|x+5\right|=0\)
\(\Rightarrow x=-5\)
\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)
\(\text{b) }\left|3-x\right|+5\)
\(\text{Vì }\left|3-x\right|\ge0\forall x\)
\(\Rightarrow\left|3-x\right|+5\ge5\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|3-x\right|=0\)
\(\Rightarrow x=3\)
\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)
\(\text{d) }D=\left(x+2\right)^2+15\)
\(\text{Vì ( x + 2 )}^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+15\ge15\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
\(a.A=\left|x-3\right|+10\)
\(A=\left|x-3\right|+10\ge10\)
\(MinA=10\Leftrightarrow x-3=0\Rightarrow x=3\)
\(B=-7+\left(x-1\right)^2\)
\(B=\left(x-1\right)^2-7\ge-7\)
\(MinB=-7\Leftrightarrow x-1=0\Rightarrow x=1\)
\(b.C=-3-\left|x+2\right|\)
\(C=-\left|x+2\right|-3\le-3\)
\(MaxC=-3\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(D=15-\left(x-2\right)^2\)
\(D=-\left(x-2\right)^2+15\le15\)
\(MaxD=15\Leftrightarrow x-2=0\Rightarrow x=2\)
Giá trị lớn nhất:
a) A=1
b) B=2015
Giá trị nhỏ nhất:
a) A=-1
b) B=-2
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)
\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)
Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5
2) a. \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)
\(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)
Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2
3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)
\(A^2=ab-bc-ac+bc\)
\(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)
\(A^2=0+a\left(b-c\right)\)
\(A^2=-20.\left(-5\right)=100\)
\(\Rightarrow A=10\)
Chúc bạn năm mới vui vẻ nha! Happy new year !
a) Ta có |x-3| >=0 với mọi x thuộc Z
=> |x-3|+10 >=0+10 với mọi x thuộc Z
hay A >=10
Dấu "=" xảy ra <=> |x-3|=0
<=> x-3=0
<=> x=3
Vậy MinA=10 đạt được khi x=3
b) Ta có (x-1)2 >=0 với mọi x thuộc Z
=> -7+(x-1)2 >= -7 với mọi x thuộc Z hay B >=-7
Dấu "=" xảy ra <=> (x-1)2=0
<=> x-1=0
<=> x=1
Vậy MinB=-7 đạt được khi x=1