K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015

= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 +  2014

= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)

Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3

28 tháng 10 2020

\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)

\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)

hay \(A\ge2014\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

19 tháng 8 2020

Bài làm:

a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)

Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)

19 tháng 8 2020

a) P = x2 - 5x 

         = ( x2 - 5x + 25/4 ) - 25/4

         = ( x - 5/2 )2 - 25/4

( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

=> MinF = -25/4 <=> x = 5/2

b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015 

         = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010

         = [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010

         = ( x + y - 1 )2 + ( y - 2 )2 + 2010

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

=> MinQ = 2010 <=> x = -1 , y = 2

9 tháng 10 2016

Ta có :

\(x^2+y^2+2x+2y+2xy+5\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\)

Đặt x+y=a

Biểu thức trở thành :

\(a^2+2a+5\)

\(=a^2+2a+1+4\)

\(=\left(a+1\right)^2+4\)

Vì \(\left(a+1\right)^2\ge0\)

\(\Rightarrow\left(a+1\right)^2+4\ge4\)

Dấu " = " xảy ra khi a + 1 = 0

<=> x+y+1=0

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0

9 tháng 10 2016

 x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN=4 khi (x;y)={(7;1)} 

Ta có : \(x+y=3\Rightarrow\left(x+y\right)^2=3^2=9\)

\(=x^2+2xy+y^2=9\)

\(\Rightarrow x^2+y^2+2.2=9\)

\(\Rightarrow x^2+y^2+4=9\)

\(\Rightarrow x^2+y^2=5\)

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3\left(x^2+y^2-2\right)\)

\(=3\left(5-2\right)=3.3=9\)

14 tháng 10 2018

1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả

\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:

Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)

\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)

\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)

\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)

14 tháng 10 2018

Chết,nhầm =((( buồn ghê =((((sorry bạn nhé!

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

18 tháng 7 2017

Bài 1

a)\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

MIN = \(-\frac{1}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)