K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

Ta có : \(B=\left|x-2017\right|+\left|x-2018\right|\)

\(\Rightarrow B=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy Bmin = 1 khi \(2017\le x\le2018\)

28 tháng 12 2017

/x-2017/>hoặc=0 với mọi x

/x-2018/>hoặc=0 với mọi x

=>/x-2017/+/x-2018/>hoặc=0

x-2017=0 =>x=2017

x-2018=0 =>x=2018

19 tháng 9 2017

B=|x-2017|+|x-2018|

Ta có |x-2017|+|x-2018| \(\ge\)|x-2017+x-2018|

=> |x-2017|+|x-2018| \(\ge\)|-4035|

=>|x-2017|+|x-2018| \(\ge\)4035.

Vậy GTNN của B là 4035.

1 tháng 11 2018

\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)

Vì :

\(\left|x+2016\right|\ge x+2016\forall x\)

\(\left|2017-x\right|\ge2017-x\forall x\)

\(\left|x-2018\right|\ge0\forall x\)

\(\Leftrightarrow B\ge x+2016+2017-x+0=4033\)

Dấu "=" xảy ra \(\Leftrightarrow2017-x=0\Leftrightarrow x=2017\)

Vậy Bmin = 4033 khi và chỉ khi x = 2017

1 tháng 11 2018

Cho sửa :v

\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)

\(B=\left|x+2016\right|+\left|x-2017\right|+\left|2018-x\right|\)

Vì \(\hept{\begin{cases}\left|x+2016\right|\ge x+2016\forall x\\\left|x-2017\right|\ge0\forall x\\\left|2018-x\right|\ge2018-x\forall x\end{cases}}\)

\(\Rightarrow B\ge x+2016+0+2018-x=4034\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)

Vậy Bmin = 4034 khi và chỉ khi x = 2017

12 tháng 2 2018

a/A=|x-2017|+|x-2018|

     =|x-2017|+|2018-x|

=>Alớn hơn hoặc bằng |x-2017+2018-x|=1

Dấu = xảy ra khi:(x-2017+2018-x) lớn hơn hoặc bằng 0

Vậy GTNN của A=1khi 2017 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2018

1 tháng 9 2017

bn đánh rõ đề ra nhé mk k hỉu đề lắm =( bằng nhau rùi còn phần j z ?

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

3 tháng 3 2020

Ta có: \(A=|x-2017|+x-2018\)

\(\Rightarrow A=|2017-x|+x-2018\)

\(\Rightarrow A\ge2017-x+x-2018=-1\)

Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)

2 tháng 3 2020

Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)

=>  A\(\ge x-2018\forall x\)

Dấu " = " xảy ra khi \(|x-2017|\)=0

=> x= 2017

10 tháng 3 2016

\(\frac{2017}{2018}\)

10 tháng 3 2016

2017 

2018

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)