\(A=x+\sqrt{4-x^2}+x\sqrt{4-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

ko biet

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự
24 tháng 7 2019

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-3}{4}\)

\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)

Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)

\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)

\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)

24 tháng 7 2019

thank

3 tháng 6 2017

ta có \(\sqrt{x-2\sqrt{x-9}}=\sqrt{\left(x-9\right)-2\sqrt{x-9}+1+8}=\sqrt{\left(1-\sqrt{x-9}\right)^2+\left(\sqrt{8}\right)^2}.\)

   Tương tự ta cũng có \(\sqrt{x+2\sqrt{x-9}}=\sqrt{\left(\sqrt{x-9}+1\right)^2+\left(\sqrt{8}\right)^2}\)

    Áp dụng BĐT \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)   ( bẠN TỰ CM NHA)

          Dấu bằng xảy ra khi ad=bc

Ta có \(A\ge\sqrt{\left(1-\sqrt{x-9}+\sqrt{x-9}+1\right)^2+\left(\sqrt{8}+\sqrt{8}\right)^2}\)

    \(\Rightarrow A\ge6\)

Dấu bằng xảy ra khi \(\left(1-\sqrt{x-9}\right)\sqrt{8}=\left(\sqrt{x-9}+1\right)\sqrt{8}\)

                             hay X = 9

Vậy Min A= 6 khi X=9

3 tháng 6 2017

Điều kiện: x\(\ge\)9

\(A=\sqrt{x-2\sqrt{x-5-4}}+\sqrt{x+2\sqrt{x-5-4}}=\sqrt{x-2\sqrt{x-9}}+\sqrt{x+2\sqrt{x-9}}\)

\(A=\sqrt{x-9-2\sqrt{x-9}+1+8}+\sqrt{x-9+2\sqrt{x-9}+1+8}\)

\(A=\sqrt{\left(\sqrt{x-9}-1\right)^2+8}+\sqrt{\left(\sqrt{x-9}+1\right)^2+8}\)

Ta nhận thấy: \(\sqrt{\left(\sqrt{x-9}-1\right)^2+8}\ge\sqrt{8}\) Và \(\sqrt{\left(\sqrt{x-9}+1\right)^2+8}>\sqrt{9}\)Với mọi x\(\ge\)9

=>  A đạt giá trị nhỏ nhất khi \(\left(\sqrt{x-9}-1\right)^2=0\) <=> x=10

=> Giá trị nhỏ nhất của A là: \(\sqrt{8}+\sqrt{12}=2\sqrt{2}+2\sqrt{3}=2\left(\sqrt{2}+\sqrt{3}\right)\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

1 tháng 7 2021

\(D=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}\)

\(=\sqrt{2}\)

dấu "=" xảy ra khi: \(\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{4-x}=0\end{cases}\orbr{\begin{cases}x=2\\x=4\end{cases}}}\)

vậy MIN \(D=\sqrt{2}\)

\(D=\sqrt{x-2}+\sqrt{4-x}\le\frac{x-2+1+4-x+1}{2}=4\)

dấu "=" xảy ra khi \(x=3\)

vậy \(MAX:D=4\)

1 tháng 7 2021

\(D=\sqrt{x-2}+\sqrt{4-x}\)

\(\Rightarrow D^2=x-2+2\sqrt{\left(x-2\right)\left(4-x\right)}+4-x=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

*GTNN

Với 2 ≤ x ≤ 4 => \(2\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Leftrightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\)

hay D2 ≥ 2 => D ≥ √2 . Dấu "=" xảy ra <=> x = 2 hoặc x = 4 (tm)

*GTLN

Áp dụng bất đẳng thức AM-GM ta có :

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\le4\)

hay D2 ≤ 4 => D ≤ 2 . Dấu "=" xảy ra <=> x = 3 (tm)

Vậy \(\hept{\begin{cases}Min_D=\sqrt{2}\Leftrightarrow x=2orx=4\\Max_D=2\Leftrightarrow x=3\end{cases}}\)