Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
a/ \(y=\dfrac{3x}{4}+\dfrac{x}{4}+\dfrac{1}{x}\ge\dfrac{3x}{4}+2\sqrt{\dfrac{x}{4}.\dfrac{1}{x}}\ge\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
\(\Rightarrow y_{min}=\dfrac{5}{2}\) khi \(x=2\)
b/ \(y=\dfrac{x^3}{2}+\dfrac{x^3}{2}+\dfrac{1}{x^2}+\dfrac{1}{x^2}+\dfrac{1}{x^2}\ge5\sqrt[5]{\dfrac{x^3}{2}.\dfrac{x^3}{2}.\dfrac{1}{x^2}.\dfrac{1}{x^2}.\dfrac{1}{x^2}}=\dfrac{5}{\sqrt[5]{4}}\)
\(\Rightarrow y_{min}=\dfrac{5}{\sqrt[5]{4}}\) khi \(x=\sqrt[5]{2}\)
1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.
Áp dụng BĐT BCS , ta có
\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)
\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)
Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5
2/ Áp dụng bđt AM-GM dạng mẫu số ta được
\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)
Vậy ......................................
Câu hỏi của Nguyễn Thị Thùy Dung - Toán lớp 9 | Học trực tuyến
Bạn tham khảo
Lời giải:
$A=\frac{x}{3}+5+\frac{12}{x}$
Áp dụng BĐT Cô-si cho các số dương:
$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$
$\Rightarrow A\geq 4+5=9$
Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$