Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ: \(x\ne1\)
Ta có: \(x^2-8x+7=0\)
\(\Leftrightarrow x^2-x-7x+7=0\)
\(\Leftrightarrow x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=7\left(nhận\right)\end{matrix}\right.\)
Thay x=7 vào B, ta được:
\(B=\dfrac{1}{7-1}=\dfrac{1}{6}\)
Vậy: Khi \(x^2-8x+7=0\) thì \(B=\dfrac{1}{6}\)
b) Ta có: \(A=\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2+2+x^2-1}{x^3-1}\)
\(=\dfrac{2x^2+1}{x^3-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
a) Ta có:
\(S=\dfrac{x+1}{x-1}\)
\(=1+\dfrac{2}{x-1}\)
S nhỏ nhất \(\Leftrightarrow\dfrac{2}{x-1}\) nhỏ nhất \(\Leftrightarrow\) x - 1 nguyên âm lớn nhất \(\Leftrightarrow\) x - 1 = -1 \(\Leftrightarrow\) x = 0. Khi đó S = -1
Vậy MinS = -1 \(\Leftrightarrow\) x = 0
Câu a : Theo BĐT Cô - Si ta có :
\(S=x+\dfrac{1}{x}-1\ge2\sqrt{x.\dfrac{1}{x}}-1=2-1=1\)
Vậy \(MIN_S=1\) . Dấu \("="\) xảy ra khi \(x=1\)
Câu b : Theo BĐT Cô - Si ta có :
\(S=x+\dfrac{1}{x-1}-1=x-1+\dfrac{1}{x-1}\ge2\sqrt{\dfrac{\left(x-1\right).1}{\left(x-1\right)}}=2\)
Vậy \(MIN_S=2\) . Dấu \("="\) xảy ra khi \(x=2\)
Câu c : Theo BĐT Cô - Si ta có :
\(S=x+\dfrac{1}{x+1}-1=x+1+\dfrac{1}{x+1}-2\ge2\sqrt{\dfrac{\left(x+1\right).1}{\left(x+1\right)}}-2=2-2=0\)
Vậy \(MIN_S=0\) . Dấu \("="\) xảy ra khi \(x=0\)
Câu d : Ta có : \(S=x+\dfrac{2}{2x+1}-1\Rightarrow2S=2x+\dfrac{4}{2x+1}-2\)
Theo BĐT Cô - Si ta có :
\(2S=2x+\dfrac{4}{2x+1}-2=2x+1+\dfrac{4}{2x+1}-3\ge2\sqrt{\dfrac{4\left(2x+1\right)}{\left(2x+1\right)}}-3=4-3=1\)
\(\Rightarrow S\ge\dfrac{1}{2}\)
Vậy \(MIN_S=\dfrac{1}{2}\) . Dấu \("="\) xảy ra khi \(x=\dfrac{1}{2}\)