\(A=\left|2016+x\right|+\left|2015-x\right|\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)

\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)

\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)

\(A\ge\left|x-2016\right|+2\ge2\)

\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)

28 tháng 2 2019

\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)

\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)

\(=2+\left|x-2016\right|\ge2\)

Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)

15 tháng 10 2017

\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(A=\left|x-2015\right|+\left|x-2017\right|+\left|x-2016\right|\)

\(A=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)

\(A\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)

\(A\ge2+\left|x-2016\right|\)

\(\left|x-2016\right|\ge0\forall x\in R\) nên

\(A\ge2\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-2015\ge0\\x-2016=0\\x-2017\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2015\\x=2016\\x\le2017\end{matrix}\right.\Leftrightarrow x=2016\)

26 tháng 12 2016

để Bmin

=> 2017-/x-2015/ phải đạt giá trị lớn nhất

=> /x-2015/ phải đạt giá trị nhỏ nhất 

mà /x-2015/ > hoặc = 0

=> /x-2015/ nhỏ nhất khi bằng 0

Ta có: x-2015=0

        =>x=2015

Thế x vào biểu thức ta có

\(\frac{2016}{2017-\left\{x-2015\right\}}\)=\(\frac{2016}{2017-\left\{2015-2015\right\}}\)=\(\frac{2016}{2017-0}\)=\(\frac{2016}{2017}\)

  vậy Bmin=\(\frac{2016}{2017}\)

a: Trường hợp 1: x<2015

A=2015-x+2016=4031-x

Trường hợp 2: x>=2015

A=x-2015+2016=x+1

b: Trường hợp 1: x<2015

B=2015-x+2016-x=4031-2x

Trường hợp 2: 2015<=x<2016

B=x-2015+2016-x=1

Trường hợp 3:x>=2016

B=x-2015+x+2016=2x-4031