Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+\left|x-2016\right|\ge2\)
Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(A=\left|x-2015\right|+\left|x-2017\right|+\left|x-2016\right|\)
\(A=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(A\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(A\ge2+\left|x-2016\right|\)
Vì \(\left|x-2016\right|\ge0\forall x\in R\) nên
\(A\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-2015\ge0\\x-2016=0\\x-2017\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2015\\x=2016\\x\le2017\end{matrix}\right.\Leftrightarrow x=2016\)
để Bmin
=> 2017-/x-2015/ phải đạt giá trị lớn nhất
=> /x-2015/ phải đạt giá trị nhỏ nhất
mà /x-2015/ > hoặc = 0
=> /x-2015/ nhỏ nhất khi bằng 0
Ta có: x-2015=0
=>x=2015
Thế x vào biểu thức ta có
\(\frac{2016}{2017-\left\{x-2015\right\}}\)=\(\frac{2016}{2017-\left\{2015-2015\right\}}\)=\(\frac{2016}{2017-0}\)=\(\frac{2016}{2017}\)
vậy Bmin=\(\frac{2016}{2017}\)
a: Trường hợp 1: x<2015
A=2015-x+2016=4031-x
Trường hợp 2: x>=2015
A=x-2015+2016=x+1
b: Trường hợp 1: x<2015
B=2015-x+2016-x=4031-2x
Trường hợp 2: 2015<=x<2016
B=x-2015+2016-x=1
Trường hợp 3:x>=2016
B=x-2015+x+2016=2x-4031