Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+4x+5=2\left(x^2+2x+\frac{5}{2}\right)=2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]=2\left(x+1\right)^2+3\ge3\)
Min=3 khi x=-1
Còn phần cô giáo thì zầy nè
\(\frac{1}{2x^2+4x+5}=\frac{1}{2\left(x^2+2x+\frac{5}{2}\right)}=\frac{1}{2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]}=\frac{1}{2\left(x+1\right)^2+3}\)
muốn \(\frac{1}{2x^2+4x+5}\) lớn nhất thì \(2x^2+4x+5\)nhỏ nhất
\(2x^2+4x+5=2\left(x^2+2x+\frac{5}{2}\right)=2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]=2\left(x+1\right)^2+3\ge3\)
Min=3 khi x=-1
\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)
\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)
\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)
\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)
Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)
\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)
\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)
Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)
GTLN của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)
cn lại lm tg tự nha bn
\(B=2x^2-5x+3\)
\(=2\left(x^2-\frac{5}{2}x+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{5}{2}x+\frac{25}{16}-\frac{1}{16}\right)\)
\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{1}{16}\right]\)
\(=2\left[\left(x-\frac{5}{4}\right)^2\right]-\frac{1}{32}\ge\frac{-1}{32}\)
\(B=2x^2-5x+3\)
\(=2\left(x^2-\frac{5}{2}x+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{5}{4}\cdot2x+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2+\frac{3}{2}\right)\)
\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{25}{16}+\frac{3}{2}\right]\)
\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{1}{16}\right]\)
\(=2\left(x-\frac{5}{4}\right)^2-\frac{1}{8}\)
có\(2\left(x-\frac{5}{4}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{5}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
\(\Rightarrow GTNNB=-\frac{1}{8}\)
với \(\left(x-\frac{5}{4}\right)^2=0;x=\frac{5}{4}\)
Ta có: A = 2x2 - 5x + 3 = 2(x2 - 5/2x + 25/16) - 1/8 = 2(x - 5/4)2 - 1/8 \(\le\)-1/8 \(\forall\)x
Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4
Vậy MinA = -1/8 <=> x = 5/4
\(A=2x^2-5x+3=2\left(x^2-\frac{5}{2}x+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{5}{2}x+\frac{25}{16}-\frac{1}{16}\right)\)
\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{1}{16}\right]\)
\(=2\left[\left(x-\frac{5}{4}\right)^2\right]-\frac{1}{8}\ge\frac{-1}{8}\)