Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(A=2x^2-x+2017\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{16135}{8}\)
\(=\left(\sqrt{2}x-\frac{1}{2\sqrt{2}}\right)^2+\frac{16135}{8}\ge\frac{16135}{8}\)
Vậy \(A_{min}=\frac{16135}{8}\Leftrightarrow\sqrt{2}x-\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{1}{4}\)
a) \(A=a^4-2a^3+2a^2-2a+2\)
\(=\left(a^4-2a^3+a^2\right)+\left(a^2-2a+1\right)+1\)
\(=\left(a^2-a\right)^2+\left(a-1\right)^2+1\ge1.\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow}a=1\)
Vậy min A = 1 đạt tại a =1/
vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)
dấu = xảy ra khi \(a=b=c=1\)
vậy min của P là 8 khi a=b=c=1
Bạn có thể tham khảo tại:
https://olm.vn/hoi-dap/question/922685.html
Chúc bạn học giỏi
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\frac{2017}{2a^2+2b^2+2018}\le\frac{2017}{\left(a+b\right)^2+2018}\)
Lại có: \(\frac{a+b}{2}=1\)
\(\Rightarrow a+b=2\)
\(\Rightarrow M\le\frac{2017}{2^2+2018}=\frac{2017}{2022}\)
Dấu bằng xảy ra khi a=b=1
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\frac{2017}{2a^2+2b^2+2018}\le\frac{2017}{\left(a+b\right)^2+2018}\)
Lại có: \(\frac{a+b}{2}=1\Rightarrow a+b=2\)
\(\Rightarrow M\le\frac{2017}{2^2+2018}=\frac{2017}{2022}\)
Dấu "=" xảy ra khi a=b=1
2
a
\(\left|2x+7\right|+\left|2x-1\right|=\left|2x+7\right|+\left|1-2x\right|\ge\left|2x+7+1-2x\right|=8\)
Dấu "=" xảy ra tại \(-\frac{7}{2}\le x\le\frac{1}{2}\)
3
\(3a^2+4b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+4b^2=0\)
\(\Leftrightarrow\left(3a^2-3ab\right)+\left(4b^2-4ab\right)=0\)
\(\Leftrightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(3a-4b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\3a=4b\end{cases}}\)
Làm nốt
Ta có \(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
\(P=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)
\(P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(P=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(P=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Áp dụng bdt Cô-si ( tự làm lười lắm :>)
\(\Rightarrow P=3+2+2+2=9\)
\(\Rightarrow P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)
GTNN của P là 9
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(P=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\left[\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\right]\)
Áp dụng BĐT Bunhiacopxki
\(\Rightarrow P\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy Min P = 9 <=> a = b = c = 1
a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)
\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)
\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)
Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
sao có ai
sai đề à
ai=ab đó