\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(A=\left(3x-1\right)^2-\left|3x-1\right|+\frac{1}{4}+\frac{3}{4}=\left(\left|3x-1\right|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=\frac{1}{2}\) hoặc \(x=\frac{1}{6}\)

30 tháng 6 2019

\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)

\(A=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)

\(A=1-\left(3x-1\right)+\left(3x-1\right)^2\)

\(A=1-3x+1+9x^2-6x+1\)

\(A=9x^2-9x+3\)

\(A=\left(3x\right)^2-2.3x.\frac{9}{6}+\frac{81}{36}-\frac{27}{36}\)

\(A=\left(3x-\frac{9}{6}\right)^2-\frac{27}{36}\)

\(A=\left(3x-\frac{9}{6}\right)^2-\frac{3}{4}\ge0\forall x\)

Dấu = xảy ra khi:

\(3x-\frac{9}{6}=0\Leftrightarrow3x=\frac{9}{6}\Leftrightarrow x=0,5\)

Vậy Amin = -3/4 tại x = 0,5

30 tháng 6 2019

A=1-\(\sqrt{\left(3x-1\right)^2}\)+(3x-1)^2

A=1-/3x-1/+(3x-1)^2

đặt t=/3x-1/ với t>=0

khi đó A=t^2-t+1

A=t^2-t+1/4+3/4

A=(t-1/2)^2+3/4

khi đó A>=3/4

dấu bằng xảy ra khi t=1/2 hay x=1/2

Chúc bạn học tốt!

\(A=1-|1-3x|+|3x-1|^2\)

\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)

NV
1 tháng 7 2019

\(A=1-\left|3x-1\right|+\left(3x-1\right)^2\)

Đặt \(\left|3x-1\right|=a\ge0\)

\(A=a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow A_{min}=\frac{3}{4}\) khi \(a=\frac{1}{2}\Leftrightarrow\left|3x-1\right|=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{1}{6}\end{matrix}\right.\)

\(A=1-\left|3x-1\right|+\left(3x-1\right)^2\)

\(=\left(\left|3x-1\right|\right)^2-2\cdot\left|3x-1\right|\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(\left|3x-1\right|-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu '=' xảy ra khi 3x-1=1/2 hoặc 3x-1=-1/2

=>3x=3/2 hoặc 3x=1/2

=>x=1/6 hoặc x=1/2

25 tháng 7 2016

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

25 tháng 7 2016

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi