\(\sqrt{x+4}+\left|x-2\right|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

ko biet

7 tháng 10 2020

Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3

Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)

Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3

7 tháng 10 2020

Mình cảm ơn bạn nhiều ạ <3

24 tháng 7 2019

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-3}{4}\)

\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)

Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)

\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)

\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)

24 tháng 7 2019

thank

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

9 tháng 8 2015

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi \(ab\ge0\)

Ta có: \(A=\left|\sqrt{x-1}-2\right|+\left|4-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+4-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi \(\left(\sqrt{x-1}-2\right)\left(4-\sqrt{x-1}\right)\ge0\)\(\Leftrightarrow\sqrt{x-1}\in\left[2;4\right]\Leftrightarrow x\in\left[5;17\right]\)

Vậy GTNN của A là 2.

7 tháng 8 2017

a) \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)        ( ĐK \(x\ge0\)\(;x\ne1\)và \(x\ne3\))

\(P=\frac{x-1-2}{\sqrt{x-1}-2}\)

\(P=\frac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\)

\(P=\sqrt{x-1}+\sqrt{2}\)

Vậy \(P=\sqrt{x-1}+\sqrt{2}\)với \(x\ne3\)

b) Với  \(x\ge0\)\(;x\ne1\)và \(x\ne3\)

Ta có \(x=4\left(2-\sqrt{3}\right)\)\(\Leftrightarrow x=8-4\sqrt{3}\)

Thay \(x=8-4\sqrt{3}\)vào biểu thức P ta có :

\(P=\sqrt{8-4\sqrt{3}-1}+\sqrt{2}\)

\(P=\sqrt{7-4\sqrt{3}}+\sqrt{2}\)

\(P=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{2}\)

\(P=2-\sqrt{3}+\sqrt{2}\)(Vì \(2>\sqrt{3}\))

Vậy ................

c) Với  \(x\ge0\)\(;x\ne1\)và \(x\ne3\)

Ta có \(x\ge0\)\(\Leftrightarrow x-1\ge1\Leftrightarrow\sqrt{x-1}\ge1\)\(\Leftrightarrow\sqrt{x-1}+\sqrt{2}\ge1+\sqrt{2}\)

Dấu \("="\)xảy ra khi x=0

Vậy min \(P=1+\sqrt{2}\)khi x=0

NM
20 tháng 3 2021

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)

b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

vậy \(P=\frac{4}{\sqrt{4}-1}=4\)

c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)

vậy \(\sqrt{P}\ge2\)