\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-4\right|\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi \(ab\ge0\)

Ta có: \(A=\left|\sqrt{x-1}-2\right|+\left|4-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+4-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi \(\left(\sqrt{x-1}-2\right)\left(4-\sqrt{x-1}\right)\ge0\)\(\Leftrightarrow\sqrt{x-1}\in\left[2;4\right]\Leftrightarrow x\in\left[5;17\right]\)

Vậy GTNN của A là 2.

5 tháng 9 2017

ko biet

22 tháng 6 2016

ui mk nhầm chỗ cuối kết quả A=2 nhé

22 tháng 6 2016

bài 1 

a) ĐKXĐ : bạn tự tìm nhé 

b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

               =\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

               =\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)

              =\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))

              =\(2\sqrt{x^2-1}\)     

28 tháng 7 2016

c)đặt C= \(x+4\sqrt{x}-4=\left(x+4\sqrt{x}+4\right)-8\)

=\(\left(\sqrt{x}+2\right)^2-8\)

ta thấy : \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x>=0

=> \(\left(\sqrt{x}+2\right)^2-8\ge-4\)

=> GTNN của C=-4 khi x=0

 

24 tháng 7 2019

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-3}{4}\)

\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)

Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)

\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)

\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)

24 tháng 7 2019

thank

7 tháng 10 2020

Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3

Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)

Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3

7 tháng 10 2020

Mình cảm ơn bạn nhiều ạ <3

NM
20 tháng 3 2021

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)

b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

vậy \(P=\frac{4}{\sqrt{4}-1}=4\)

c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)

vậy \(\sqrt{P}\ge2\)