K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(a,A=x-4\sqrt{x+9}=\left(x+9-4\sqrt{x+9}+4\right)-13\\ A=\left(\sqrt{x+9}-2\right)^2-13\ge-13\\ A_{min}=-13\Leftrightarrow x+9=4\Leftrightarrow x=-5\\ b,B=x-3\sqrt{x-10}=\left(x-10-3\sqrt{x-10}+\dfrac{9}{4}\right)+\dfrac{31}{4}\\ B=\left(\sqrt{x-10}+\dfrac{9}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\\ B_{min}=\dfrac{31}{4}\Leftrightarrow x-10=\dfrac{81}{16}\Leftrightarrow x=\dfrac{241}{16}\\ c,C=x-\sqrt{x+1}=\left(x+1-\sqrt{x+1}+\dfrac{1}{4}\right)-\dfrac{5}{4}\\ C=\left(\sqrt{x+1}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ C_{min}=-\dfrac{5}{4}\Leftrightarrow x+1=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{3}{4}\)

\(d,D=x+\sqrt{x+2}=\left(x+2+\sqrt{x+2}+\dfrac{1}{4}\right)-\dfrac{9}{4}\\ D=\left(\sqrt{x+2}+\dfrac{1}{4}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ D_{min}=-\dfrac{9}{4}\Leftrightarrow\sqrt{x+2}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: \(A=x-4\sqrt{x}+9\)

\(=\left(\sqrt{x}-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=4

b: \(B=x-3\sqrt{x}-10\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{49}{4}\)

\(=\left(\sqrt{x}-\dfrac{3}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{4}\)

15 tháng 12 2016

Đề là như thế này à bạn

Tìm GTNN của \(\frac{x^2+2}{\sqrt{x^2}+1}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

Câu 1: 

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)

\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)

b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:

\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)

\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)

 

24 tháng 9 2018

a.x>0

b.x>0

c.x>4

d.x>-3.5

25 tháng 9 2018

1)

a) Để biểu thức \(\sqrt{\dfrac{x}{3}}\)có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để biểu thức \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để biểu thức\(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để biểu thức \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow3x\ge-7\Leftrightarrow x\ge\dfrac{-7}{3}\)

2)

a) Để biểu thức \(\sqrt{2x+7}\) có nghĩa thì \(2x+7\ge0\Leftrightarrow2x\ge-7\Leftrightarrow x\ge\dfrac{-7}{2}\)

b) Để biểu thức \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

c) Để biểu thức \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\dfrac{1}{-1+x}>0\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2024

Lời giải:

\(P=\sqrt{3+2x-x^2}=\sqrt{4-(x^2-2x+1)}=\sqrt{4-(x-1)^2}\)

Vì $(x-1)^2\geq 0$ với mọi $x$ nên $4-(x-1)^2\leq 4$

$\Rightarrow P\leq \sqrt{4}=2$
Vậy $P_{\max}=2$

Giá trị này đạt được tại $x-1=0\Leftrightarrow x=1$