K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

+ ĐK : \(x\ne-1\)

\(\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x^2+2x+1\right)+\left(x^2-2x+1\right)}{\left(x+1\right)^2}=\frac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x+1\right)^2}=1+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\ge1\forall x\ne-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

11 tháng 7 2016

1. \(A=x^2+12x+27=\left(x^2+12x+36\right)-9=\left(x+6\right)^2-9\ge-9\)

Vậy Min A = -9 <=> x = -6

2. \(B=2x-x^2-2=-\left(x^2-2x+1\right)-2+1=-\left(x-1\right)^2-1\le-1\)

Vậy Max B = -1 <=> x = 1

3 tháng 7 2017

Ta có : x2 - x + 1 

=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy giá trị của biểu thức luôn luôn dương với mọi x 

3 tháng 7 2017

Ta có : x2 - 8x + 17 

= x2 - 2.x.4 + 16 + 1

= (x - 4)2 + 1 

Mà (x - 4)2 \(\ge0\forall x\)

Nên : (x - 4)2 + 1 \(\ge1\forall x\)

Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)

Vậy giá trị của biểu thức luôn luôn dương với mọi x 

21 tháng 4 2018

\(A=2x^2-8x+1\)

\(A=2\left(x^2-4x+\frac{1}{2}\right)\)

\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)

\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)

\(A=2\left(x-2\right)^2-7\ge7\forall x\)

dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

vậy MIN A = 7 khi \(x=2\)

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)

dấu \("="\)  xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)

vậy MIn B = \(\frac{9}{5}\)  khi \(x=\frac{-2}{5}\)

còn lại làm tương tự nhé 

21 tháng 4 2018

Ta có : 

\(A=2x^2-8x+1\)

\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)

\(A=2\left(x^2-4x+4\right)-7\)

\(A=2\left(x-2\right)^2-7\ge-7\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)

Chúc bạn học tốt ~ 

15 tháng 8 2016
1/ Gtnn của A là 0 khi x=1 2/ Đặt x^2 + x = a ta có a(a-4)=a^2 -4a >= (a-2)^2 - 4 >=-4 Đạt được khi x=1 hoặc x=-2
9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0