Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(2x-3)*(4+3x)
=6x2-x-12
=6.(x2-\(\frac{1}{6}\)x-2)
=6.(x2-2.x.\(\frac{1}{12}\)+\(\frac{1}{144}\)-\(\frac{289}{144}\))
=6.(x-\(\frac{1}{12}\))2-\(\frac{289}{24}\)
Vì 6.(x-\(\frac{1}{12}\))2\(\ge\)0 nên:
6.(x-\(\frac{1}{12}\))2-\(\frac{289}{24}\)\(\ge\)-\(\frac{289}{24}\)
Dấu "=" xảy ra khi
x-\(\frac{1}{12}\)=0
<=>x=\(\frac{1}{12}\)
Vậy GTNN của C là -\(\frac{289}{24}\)tại x=\(\frac{1}{12}\)
\(x^4\)-2x\(^3\)+3x\(^2\)-2x+2
=(\(x^4\)-2x\(^3\)+x\(^2\))+(2x\(^2\)-2x)+2
=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+2
=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+1+1
=(x\(^2\)-x+1)\(^2\)+1
=[x\(^2\)-2.x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)]\(^2\)+1
=[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1
Ta có:(x-\(\dfrac{1}{2}\))\(^2\)\(\ge0\)
=>(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)\(\ge\dfrac{3}{4}\)
=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2\(\ge\dfrac{9}{16}\)
=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1\(\ge\dfrac{9}{16}+1\)=\(\dfrac{25}{16}\)
Vậy Min F(x)=\(\dfrac{25}{16}\)khi x-\(\dfrac{1}{2}\)=0=>x=\(\dfrac{1}{2}\)
\(Q=\left(x^2\right)^2+2.x^2.x+x^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow Q=\left(x^2+x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)
Vậy GTNN của Q là \(\frac{9}{16}\) khi \(x=\frac{-1}{2}\)
\(A=3x^2-2x+3=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\frac{1}{\sqrt{3}}+\left(\frac{1}{\sqrt{3}}\right)^2\right]+\frac{8}{3}=\left(\sqrt{3}x-\frac{1}{\sqrt{3}}\right)^2+\frac{8}{3}\)\(\ge\frac{8}{3}\)Vậy GTNN của A là \(\frac{8}{3}\)đạt được khi \(x=\frac{1}{3}\)
nhìn khổ vậy
A = 3x2 - 2x + 3
= 3( x2 - 2/3x + 1/9 ) + 8/3
= 3( x - 1/3 )2 + 8/3 ≥ 8/3 ∀ x
Dấu "=" xảy ra <=> x = 1/3
Vậy ...
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này
( 2x - 3 )( 4 + 3x )
= 8x + 6x2 - 12 - 9x
= 6x2 - x - 12
= 6( x2 - 1/6x + 1/144 ) - 289/24
= 6( x - 1/12 )2 - 289/24 ≥ -289/24 ∀ x
Dấu bằng xảy ra khi x = 1/12
=> GTNN của biểu thức = -289/24 <=> x = 1/12