K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

13 tháng 8 2016

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)

2 tháng 9 2017

Ta có : \(A=1-x^2+x\)

\(\Rightarrow A=-\left(x^2-x-1\right)\)

\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}-\frac{5}{4}\right)\)

\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)

\(\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)

Nên : \(A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\forall x\)

Vậy Amax = \(\frac{5}{4}\) khi \(x=\frac{1}{2}\)

2 tháng 9 2017

Ta có : \(B=5x-x^2\)

\(=-\left(x^2-5x\right)\)

\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)

\(=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}\)

B\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì \(-\left(x-\frac{5}{2}\right)^2\) \(\text{≤ }0∀x \)

Nên : B \(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\) \(\text{≤ }\frac{25}{4}∀x\)

Vậy \(B_{min}=\frac{25}{4}\) khi \(x=\frac{5}{2}\)

a: Thay x=2/3 vào A, ta được:

\(A=\dfrac{3\cdot\dfrac{2}{3}+2}{\dfrac{2}{3}}=\dfrac{2+2}{\dfrac{2}{3}}=4\cdot\dfrac{3}{2}=6\)

b: \(B=\dfrac{x^2+1}{x^2-x}-\dfrac{2}{x-1}\)

\(=\dfrac{x^2+1}{x\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x^2+1-2x}{x\left(x-1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=\dfrac{x-1}{x}\)

c: P=A:B

\(=\dfrac{3x+2}{x}:\dfrac{x-1}{x}=\dfrac{3x+2}{x}\cdot\dfrac{x}{x-1}=\dfrac{3x+2}{x-1}\)

Để P là số nguyên thì \(3x+2⋮x-1\)

=>\(3x-3+5⋮x-1\)

=>\(5⋮x-1\)

=>\(x-1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{2;0;6;-4\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;6;-4\right\}\)

Thay x=2 vào P, ta được:

\(P=\dfrac{3\cdot2+2}{2-1}=\dfrac{8}{1}=8\)

Thay x=6 vào P, ta được:

\(P=\dfrac{3\cdot6+2}{6-1}=\dfrac{18+2}{5}=\dfrac{20}{5}=4\)

Thay x=-4 vào P, ta được:

\(P=\dfrac{3\cdot\left(-4\right)+2}{-4-1}=\dfrac{-12+2}{-5}=\dfrac{-10}{-5}=2\)

Vì 2<4<8

nên khi x=-4 thì P có giá trị nguyên nhỏ nhất

18 tháng 3 2018

mình không làm đc

22 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này

5 tháng 8 2019

b) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy GTNN của bt là -36\(\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

5 tháng 8 2019

a) \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\frac{4}{3}\right)\)

\(=3\left[\left(x-1\right)^2-\frac{4}{3}\right]=3\left(x-1\right)^2-4\ge-4\)

Vậy GTNN của bt là - 4\(\Leftrightarrow x=1\)