\(\sqrt[3]{x}+\sqrt{x}-88\)

b)\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

5 tháng 9 2017

ko biet

28 tháng 7 2016

c)đặt C= \(x+4\sqrt{x}-4=\left(x+4\sqrt{x}+4\right)-8\)

=\(\left(\sqrt{x}+2\right)^2-8\)

ta thấy : \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x>=0

=> \(\left(\sqrt{x}+2\right)^2-8\ge-4\)

=> GTNN của C=-4 khi x=0

 

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

3 tháng 7 2017

xin lỗi bn mik mới học lớp 6 thôi

13 tháng 6 2017

\(A=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=\left[10-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=2x^2y^2+x^4y^4-40xy+101\)

\(=\left(x^4y^4-8x^2y^2+16\right)+10\left(x^2y^2-4xy+4\right)+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y=\sqrt{10}\\xy=2\end{cases}}\)

13 tháng 6 2017

\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)

mà \(^{x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=5}\)

=>\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\ge25\)