Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5y+y^2-2xy+5x=\left(x^2-2xy+y^2\right)+\left(5x-5y\right)\)
a/ x2 – 5y + y2 -2xy + 5x = ( x2 - 2xy + y2 ) - 5( y - x ) = ( x - y )2 - 5( y - x ) = ( y - x )2 - 5( y - x ) = ( y - x )( y - x - 5 )
b/ 4x2 – 81(y – 2)2 = 4x2 - 92(y – 2)2= 4x2 – ( 9y – 18)2 = ( 2x -9y -18 )( 2x + 9y + 18 )
c/ x2z – y2z + 2yz – z = ( x2z + yz ) - ( y2z - yz ) - z = z( x2 + y ) - z( y2 - y ) -z = z( x2 + y - y2 +y - 1 ) = z( x2 + 2y - y2 - 1 ) \(=z[x^2-\left(y^2-2y+1\right)]=z[x^2-\left(y-1\right)^2=z\left(x-y+1\right)\left(x+y-1\right)\)
d/ x3 – 8y3 + x2 + 2xy + 4y2 = ( x3 – 8y3 ) + x2 + 2xy + 4y2 = ( x -2y )( x2 + 2xy + 4y2 ) + ( x2 + 2xy + 4y2 0 = ( x2 + 2xy + 4y2)( x -2y +1)
e/ 7x2 – 11x + 4 = 7x2 -7x -4x +4 = 7x( x-1 ) - 4( x - 1 ) = ( x - 1 )( 7x - 4 )
g/ 13x2 + 2xy – 15y2 = 13x2 - 13xy + 15xy - 15y2 = 13x( x - y ) + 15y( x - y ) = ( x - y )( 13x + 15y )
h/ x3 + 3x2 + 3x + 2 = x3 +2x2 + x2 +2x + x + 2 = x2( x + 2 ) + x( x + 2 ) + ( x + 2 ) = ( x + 2 )( x2 + x + 1 )
i/ x3 – 3x2 + 3x – 2 + xy – 2y = x3 - 2x2 - x2 + 2x + x - 2 +xy - 2y = x2( x - 2 ) - x( x - 2 ) + ( x - 2 ) + y( x - 2 ) = ( x - 2 )( x2 - x +1 + y )
A=(x−1)2+8≥8Amin=8⇔x=1B=(x+3)2−12≥−12Bmin=−12⇔x=−3C=x2−4x+3+9=(x−2)2+8≥8Cmin=8⇔x=2E=−(x+2)2+11≤11Emax=11⇔x=−2F=9−4x2≤9Fmax=9⇔x=0
HT
A=x2-2x+9
Ta có: A=x^2-2x+9
=> A=(x^2-2x+1)+8
=>A=(x-1)^2+8
vì (x-1)^2 > 0 với mọi x
=> (x-1)^2+8> 8 với mọi x
Dấu "=" xáy ra khi:
(x-1)^2=0=>x-1=0=>x=0+1=>x=1
Vậy Amin = 8 khi x=1
B=x^2+6x-3
=>B=-(x^2-6x+3)
=>B=-(x^2-2.3x+3^2)-3
=>B=-(x-3)^2-3
vì -(x-3)^2 < 0 với mọi x
=>-(x-3)^2-3< -3 với mọi x
Dấu '=' xảy ra khi x-3=0=>x=0+3=>x=3
Vậy B(min)=-3 khi x=3
chỗ này hình như là Bmax xem lại đề nhé
D=-x^2-4x+7
=>D=-x^2-2.2x+4+3
=>D=(-x^2-2.2x+4)+3
=>D=(-x-2)^2+3
Vì (-x-2)^2 <0 với mọi x
=>(-x-2)^2+3<3 với mọi x
Dấu "=" xảy ra khi x-2=0=>x=0+2=>x=2
Vậy Dmax=3 khi x=2
E=5-4x^2+4x
=>E=-4x^2+4x+5
=>E=(-2x)^2+2.2x+4+1
=>E=[(-2x)^2+2.2x+4]
=>E=(-2x+2)^2+1
Vì: (-2x+2)^2 < 0 với mọi x
=>(-2x+2)^2+1 < 1 với mọi x
Dấu "=" xảy ra khi 2x+2=0=>2x=-2=>x=-1
Vậy Emax=1 khi x=-1
a, \(A=x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu ''='' xảy ra khi x = 3/2
Vậy GTNN của A bằng 11/4 tại x = 3/2
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)Dấu ''='' xảy ra khi x = 0
Vậy GTNN của B bằng 5 tại x = 0
\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)
Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)
\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)
\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)
\(=-\left(x-5\right)^2+27\le27\)
Vậy \(C_{max}=27\Leftrightarrow x=5\)
3y3 - 7y2 - 7y + 3 = 0
<=> 3y3 + 3y2 - 10y2 - 10y + 3y + 3 = 0
<=> 3y2( y + 1 ) - 10y( y + 1 ) + 3( y + 1 ) = 0
<=> ( y + 1 )( 3y2 - 10y + 3 ) = 0
<=> ( y + 1 )( 3y2 - 9y - y + 3 ) = 0
<=> ( y + 1 )[ 3y( y - 3 ) - ( y - 3 ) ] = 0
<=> ( y + 1 )( y - 3 )( 3y - 1 ) = 0
<=> y = -1 hoặc y = 3 hoặc y = 1/3
Vậy ...
2y4 - 9y3 + 14y2 - 9y + 2 = 0
<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0
<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0
<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0
<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0
<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0
<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0
<=> y = 2 hoặc y = 1 hoặc y = 1/2
Vậy ...
Trả lời:
\(I=x^4-6x^3+11x^2-12x+20\)
\(=x^4-6x^3+9x^2+2x^2-12x+18+2\)
\(=\left(x^4-6x^3+9x^2\right)+\left(2x^2-12x+18\right)+2\)
\(=\left[\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2\right]+2\left(x^2-6x+9\right)+2\)
\(=\left(x^2-3x\right)^2+2\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2-3x=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0;x=3\\x=3\end{cases}\Leftrightarrow}\hept{x=3}}\)
Vậy GTNN của I = 2 khi x = 3
\(A=x^4-6x^3+10x^2-6x+9\)
\(=x^4-6x^3+9x^2+x^2-6x+9\)
\(=\left(x^4-6x^3+9x^2\right)+\left(x^2-6x+9\right)\)
\(=\left(x^2-3x\right)^2+\left(x-3\right)^2\ge0\forall x\)
Dấu "=" xảy ra khi x = 3 (giống ý trên)
Vậy GTNN của A = 0 khi x = 3
a: =4(x^2-3/2x-5)
=4(x^2-2*x*3/4+9/16-89/16)
=4(x-3/4)^2-89/4>=-89/4
Dấu = xảy ra khi x=3/4
b: =3(x^2-8/3x+1)
=3(x^2-2*x*4/3+16/9-7/9)
=3(x-4/3)^2-7/3>=-7/3
Dấu = xảy ra khi x=4/3
Lời giải:
a. $A=4x^2-6x-20=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{89}{4}$
$=(2x-\frac{3}{2})^2-\frac{89}{4}$
Vì $(2x-\frac{3}{2})^2\geq 0$ với mọi $x$
$\Rightarrow A\geq 0-\frac{89}{4}=\frac{-89}{4}$
Vậy $A_{\min}=\frac{-89}{4}$. Giá trị này đạt tại $2x-\frac{3}{2}=0$
$\Leftrightarrow x=\frac{3}{4}$
b.
$B=3x^2-8x+1=3(x^2-\frac{8}{3}x)+1$
$=3[x^2-2.x.\frac{4}{3}+(\frac{4}{3})^2]-\frac{13}{3}$
$=3(x-\frac{4}{3})^2-\frac{13}{3}\geq 3.0-\frac{13}{3}=\frac{-13}{3}$
Vậy $B_{\min}=\frac{-13}{3}$. Giá trị này đạt tại $x-\frac{4}{3}=0$
$\Leftrightarrow x=\frac{4}{3}$