Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
\(C=2x^2+9y^2-6xy-2x+2018\)
\(=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-3y\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2+2017\ge2017\)
\(\Leftrightarrow C\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2017\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(D=x^2-2xy+6y^2-12x+2y+45\)
\(=\left(x^2-2xy+y^2\right)-\left(12x+12y\right)-10y+5y^2+45\)
\(=\left(x-y\right)^2-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-y-6\right)^2\ge0\\5\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-y-6\right)+5\left(y-1\right)^2+4\ge4\)
\(\Leftrightarrow D\ge4\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Vậy \(D_{Min}=4\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(4x^2+y^2-2xy-2x+2y=\left(x^2+y^2+1-2xy-2x+2y\right)+3x^2.\)
\(=\left(x-y-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\3x^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)
\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)
\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)
\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)
Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)
Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)
b) \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)
\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)
\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)
Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3
Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)
a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)
d)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(x2-2x+1)+2
= (x-y)2+(x-1)2 +2
do (x-y)2 ≥ 0 ∀ x,y
(x-1)2 ≥ 0 ∀ x
=> (x-y)2+(x-1)2 +2 ≥ 2
=> A ≥ 2
nimA=2 dấu "=" xảy ra khi
x-y=0
x-1=0
=> x=y=1
vậy nimA =2 khi x=y=1
a,Đặt A= \(2x^2+2xy+y^2-2x+2y+15\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)+10\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2+10\)
Vì \(\left(x+y+1\right)^2\ge0;\left(x-2\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2+10\ge0\)
hay \(A\ge10\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy min A=10 khi x=2; y=-3
b/ \(=\left(x^2-2xy+y^2\right)+\left(3x^2-12x+12\right)+\left(8y^2-32y+32\right)-4\)
=\(\left(x-y\right)^2+3\left(x-2\right)^2+8\left(y-2\right)^2-4\ge-4\)
Vậy Min =-4 khi x=y=2