Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+\left|x-2016\right|\ge2\)
Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
Nếu thế thì làm lại!
A đạt giá trị nhỏ nhất khi \(\left[x-2016\right]\)nhỏ nhất
\(\Rightarrow\left[x-2016\right]\ge0\)
\(\Rightarrow x=0+2016=2016\)
\(\Rightarrow A_{min}=\dfrac{\left[2016-2016\right]+2017}{\left[2016-2016\right]+2018}=\dfrac{2017}{2018}\)
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)
Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất
Ta có: \(\left|x-2016\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)
Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)
Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016
Ta có :
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)
\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)
<=> |x - 2016| = 0
<=> x = 2016
Tìm giá trị nhỏ nhất của biểu thức
a) A= |x-2016| + |x+2017|
b) \(\frac{3}{\left(x+5\right)^2+2016}\)
a, \(\left|x-2016\right|+\left|x+2017\right|=\left|2016-x\right|+\left|x+2017\right|\)
\(\ge\left|2016-x+x+2017\right|=4033\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2016-x\right)\left(x+2017\right)\ge0\)
Bạn tự giải nốt nhé!
b. Ta có : \(\left(x+5\right)^2\ge0\) với mọi x
\(\Leftrightarrow\left(x+5\right)^2+2016\ge2016\) với mọi x
\(\Leftrightarrow\frac{1}{\left(x+5\right)^2+2016}\le\frac{1}{2016}\) với mọi x
\(\Leftrightarrow\frac{3}{\left(x+5\right)^2+2016}\le\frac{3}{2016}=\frac{1}{672}\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Bạn tự kết luận nha :)