Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
E= \(\frac{5-x}{x-2}\) = \(\frac{3+2-x}{x-2}\) = \(\frac{3}{x-2}-1\)
Vì E= \(\frac{3}{x-2}\) - 1 nên E có GTNN <=> \(\frac{3}{x-2}\) có GTNN
Với x>2 thì \(\frac{3}{x-2}\) > 0 ; với x< 2 thì \(\frac{3}{x-2}\) < 0
Vậy ta xét những giá trị x< 2
\(\frac{3}{x-2}\) có GTNN <=> \(\frac{3}{2-x}\) có GTLN <=> 2-x có GTNN ( vì \(\frac{3}{2-x}\) > 0 )
<=> x lấy GTLN <=> x= 1 ( vì x ϵ Z ; x> 2 )
Lúc đó GTNN của E = \(\frac{3}{1-2}\) - 1 = -4 ( khi x= 1 )
\(M=\frac{1+2013-x}{x-2013}=\frac{1}{x-2013}+\frac{2013-x}{x-2013}=\frac{1}{x-2013}-1\)
Đê M nhỏ nhất thì \(\frac{1}{x-2013}\) là số nguyên âm nhỏ nhất => \(\frac{1}{2013-x}\) là số nguyên dương lớn nhất => 2013 - x là số nguyên dương nhỏ nhất
=> 2013 - x = 1 => x = 2013 - 1 = 2012
Vậy x = 2012 thì M nhỏ nhất
-Để B có giá trị nhỏ nhất thì 8-x lớn nhất và x-3 nhỏ nhất
+) Để 8-x lớn nhất thì x nhỏ nhất => x=0
Thay vào ta có \(\frac{8-0}{0-3}=\frac{8}{-3}\)
Vậy x=0
Đặt \(A=\frac{1}{x-5}\)
Để A có GTNN thì \(x-5< 0\) và đạt GTLN
\(\Rightarrow\)\(x-5=-1\)
\(\Rightarrow\)\(x=4\)
\(\Rightarrow\)\(A=\frac{1}{x-5}=\frac{1}{4-5}=\frac{1}{-1}=-1\)
Vậy \(A_{min}=-1\) khi \(x=4\)
Để 1/x-5 là giá trị nhỏ nhất
=> 1/x-5=-1 => x-5=-1
mà x-5 =-1
=> x=4
:3