Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{x^3-x^2+2}{x-1}\)
\(A=\frac{x^2\left(x-1\right)+2}{x-1}\)
\(A=x^2+\frac{2}{x-1}\)
Để A có giá trị là 1 số nguyên
\(\Leftrightarrow\frac{2}{x-1}\inℤ\)
\(\Leftrightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
( thoả mãn ĐKXĐ )
Vậy ........
\(\frac{x^3-x^2+2}{x-1}=x^2+\frac{2}{x-1}\)
Để \(x\in Z,A\in Z\Leftrightarrow x-1\inƯ\left(2\right)\)
\(Ư\left(2\right)\in\left\{\pm1;\pm2\right\}\)
x-1 | 2 | 1 | -2 | -1 |
x | 3 | 2 | -1 | 0 |
Vậy ........
\(\frac{x^3-2x^2+x+2}{x-2}=\frac{x^2\left(x-2\right)+\left(x-2\right)+4}{x-2}=\frac{\left(x-2\right)\left(x^2+1\right)+4}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2+1\right)}{x-2}+\frac{4}{x-2}=x^2+1+\frac{4}{x-2}\)
\(x^2+1+\frac{4}{x-2}\) nguyên khi và chỉ khi 4 chia hết cho x-2
<=>\(x-2\inƯ\left(4\right)=\left\{-4;-1;1;4\right\}\)
<=>\(x\in\left\{-2;1;3;6\right\}\)
Vậy ..................
Để A là số nguyên thì \(x^2\left(x-2\right)+x-2+4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
\(ĐKXĐ:x\ne1\)
a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)
\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)
b) Thay \(x=-\frac{1}{2}\)vào A, ta được :
\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)
\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)
\(\Leftrightarrow A=-1\)
c) Để A < 1
\(\Leftrightarrow2x^2+1< x-1\)
\(\Leftrightarrow2x^2-x+2< 0\)
\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)
\(\Leftrightarrow x\in\varnothing\)
Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)
d) Để A có giá trị nguyên
\(\Leftrightarrow2x^2+1⋮x-1\)
\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)
\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)