\(A=\frac{4x^3-3x^2+2x-83}{x-3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Biến đổi \(A=4x^2+9x+29+\frac{4}{x-3}\)

\(\Leftrightarrow A\in Z\)

\(\Leftrightarrow\frac{4}{x-3}\in Z\)

\(\Leftrightarrow x-3\inƯ\left(4\right)\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng :

x-3-11-22-44
x24-15-17
3 tháng 11 2019

\(A=\frac{4x^3-3x^2+2x-83}{x-3}\)

\(=4x^2+9x+29+\frac{4}{x-3}\)

\(\Rightarrow A\in Z\)

\(\Rightarrow\frac{4}{x-3}\in Z\)

\(\Rightarrow x-3\inƯ\left(4\right)=\left\{+1;\pm2;\pm4\right\}\)

Chỗ này mình làm tắt luôn nên chịu khó tử hiểu nhé, nếu k đc thì nhắn tin vs mình

\(\Rightarrow x=-1;1;2;4;5;7\)

3 tháng 11 2019

mọi người giúp em với ạ

15 tháng 4 2020

\(3-m=\frac{10}{x+2}\)

\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)

=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}

TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)

TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)

15 tháng 4 2020

bài 3:

\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)

\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)

Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên 

Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)

Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng

x-3-5-115
x-2248
22 tháng 2 2019

a, \(A=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{2x\left(x-2\right)+x-2}\)

\(=\frac{\left(x-2\right)\left(4x^2+3\right)}{\left(x-2\right)\left(2x+1\right)}=\frac{4x^2+3}{2x-1}\left(ĐKXĐ:x\ne2;x\ne-\frac{1}{2}\right)\)

b, \(A\in Z\Leftrightarrow\frac{4x^2+3}{2x-1}\in Z\Leftrightarrow2x+1+\frac{4}{2x-1}\in Z\)

\(\Leftrightarrow\frac{4}{2x-1}\in Z\Leftrightarrow4⋮\left(2x-1\right)\)

\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Mà 2x - 1 là số lẻ nên \(2x-1\in\left\{-1;1\right\}\Rightarrow x\in\left\{0;1\right\}\) (thỏa mãn ĐKXĐ)

20 tháng 11 2017

Gợi ý thôi nhé

a: x^2 - 5x + 8 = x^2 - 3x  - 2x + 6 + 2 = (x-3).(x-2) + 2

=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)

<=> x-3 thuộc Ư(2) do x nguyên

Các câu khác thì cứ làm sao cho nó thành đa thức như thế

20 tháng 11 2017

thanks nhé!

10 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)

\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)

\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)

\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)

\(\Leftrightarrow Q=\frac{x+1}{2x}\)

b) Để \(Q\inℤ\)

\(\Leftrightarrow x+1⋮2x\)

\(\Leftrightarrow2\left(x+1\right)⋮2x\)

\(\Leftrightarrow2x+2⋮2x\)

\(\Leftrightarrow2⋮2x\)

\(\Leftrightarrow2x\inƯ\left(2\right)\)

\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)

Mà \(x\inℤ\)

Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

12 tháng 2 2017

đk: x khác +-3/2

các gt x: 1,4,6,9

12 tháng 2 2017

a) ĐKXĐ của A   : \(\hept{\begin{cases}2x-3\ne0\\2x+3\ne0\\9-4x^2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{3}{2}\\x\ne-\frac{3}{2}\end{cases}}}\) 

=> Giá trị của biểu thức A được xác định khi x khác 3/2 và x khác -3/2

        \(A=\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)

          \(=\frac{5}{2x-3}+\frac{2}{2x+3}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)

         \(=\frac{5.\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2.\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)

         \(=\frac{10x+15+4x-6+2x+5}{\left(2x+3\right)\left(2x-3\right)}\)

     ..... chắc tôi làm sai oy !