Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em nhấn vào link màu xanh: Câu hỏi của Nguyễn Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
We have equation \(x+y=xy\)
\(\Rightarrow xy-x-y=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1=\left(-1\right).\left(-1\right)=1.1\)
So equation has two value \(\left(2;2\right),\left(0;0\right)\)
We have \(p\left(x+y\right)=xy\)
\(\Leftrightarrow xy-px-py=0\)
\(\Leftrightarrow xy-px-py+p^2=p^2\)
\(\Leftrightarrow x\left(y-p\right)-p\left(y-p\right)=p^2\)
\(\Leftrightarrow\left(x-p\right)\left(y-p\right)=p^2\)
But p is prime so \(Ư\left(p^2\right)=\left\{1;p;p^2\right\}\)
\(\Rightarrow\left(x-p\right)\left(y-p\right)=1.p^2=p.p=p^2.1=\left(-p\right).\left(-p\right)\)
\(=\left(-1\right).\left(-p^2\right)=\left(-p^2\right).\left(-1\right)\)
So equation has values \(S=\left(p+1;p^2+p\right);\left(2p;2p\right);\left(p^2+p;p+1\right);\left(0;0\right)\)
\(;\left(p-1;p-p^2\right);\left(p-p^2;p-1\right)\)
Tìm n thuộc Z để các phân thức sau có giá trị nguyên:
1) \(\frac{n-5}{2n+1}\)
2) \(\frac{n^2+4}{n-1}\)
1) Để phân thức đạt trị nguyên
=> n - 5 chia hết cho 2n + 1
<=> 2n - 10 chia hết cho 2n + 1
<=> 2n + 1 - 11 chia hết cho 2n + 1
<=> 11 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(11) = {1 ; -1 ; 11 ; -11}
Ta có bảng sau :
2n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -1 | 5 | -6 |
2) Như câu 1 , ta có :
n2 + 4 chia hết cho n - 1
n2 - n + n + 4 chia hết cho n - 1
<=> n(n - 1) + n + 4 chia hết cho n - 1
<=> n - 1 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Còn lại giống 1 , lập bảng xét giá trị n nha !
Để ; \(\frac{n+3}{n+1}\in Z\)
Thì n + 3 chia hết cho n + 1
=> (n + 1) + 2 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n + 1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
\(\frac{2n^2+9n+7}{2n+1}=\frac{\left(2n^2+9n+4\right)+3}{2n+1}=\frac{\left(2n^2+n+8n+4\right)+3}{2n+1}\)
\(=\frac{n\left(2n+1\right)+4\left(2n+1\right)+3}{2n+1}=\frac{\left(n+4\right)\left(2n+1\right)+3}{2n+1}=n+4+\frac{3}{2n+1}\)
Để phân thức trên là 1 số nguyên <=> \(3⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-2;-1;0;1\right\}\)