Tìm giá trị nguyên của n để giá trị của biểu thức 3n
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

3x3 + 10x2 + 2 = 3x3 + x2 + 9x2 + 3x - 3x - 1 + 3

= x2( 3x + 1 ) + 3x( 3x + 1 ) - ( 3x + 1 ) + 3

= ( 3x + 1 )( x2 + 3x - 1 ) + 3

Vì ( 3x + 1 )( x2 + 3x - 1 ) ⋮ ( 3x + 1 )

=> 3 ⋮ ( 3x + 1 ) <=> ( 3x + 1 ) ∈ Ư(3) ( đến đây bạn tự xét giá trị nhé )

26 tháng 8 2019

Với x = 71 thì x -1 = 70

\(x^5-x^4\left(x-1\right)-x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+34\)

\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)

\(=71+34=105\)

Vậy biểu thức trên không phụ thuộc vào biến x

23 tháng 4 2016

Bài 1:

a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)  

TH1: \(\frac{3x-2}{4}\)  = \(\frac{3x+3}{6}\) 

=> (3x-2)6 = (3x+3)4

     18x -12= 12x+12

=> x = 4

TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\) 

=> (3x-2)6 > (3x+3)4

     18x-12> 12x+12

=> x \(\ge\) 5

b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2

c) Phần c bạn cũng xét tương tự như phần a 

TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)

TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)

23 tháng 4 2016

Đã xem -_-
 

26 tháng 7 2021

\(a,9x^2-6x+2\)

\(\left(3x-1\right)^2+1\ge1>0\)

vậy pt luôn dương

\(b,x^2+x+1\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

vậy pt luôn dương

\(c,2x^2+2x+1\)

\(\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

vậy pt luôn dương

26 tháng 7 2021

Trả lời:

a, \(9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall0\)

Dấu "=" xảy ra khi 3x - 1 = 0 <=> x = 1/3

Vậy bt luôn dương với mọi x

b, \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = 0 <=> x = - 1/2

Vậy bt luôn dương với mọi x

c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = - 1/2

Vậy bt luôn dương với mọi x

31 tháng 3 2018

đề trường nào đây bạn

30 tháng 10 2016

Thay 12 = x + 1 vào biểu thức trên, ta có:

x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 111

= x4 - x4 - x3 + x3 + x2 - x2 - x + 111

= 111 - x (*)

Thay x = 11 vào (*), ta có:

111 - 11

= 100

Vậy giá trị của biểu thức trên là 100 tại x = 11

(x + y + z)3 - x3 - y3 - z3

= x3 + y3 + z3 + 3(x + y)(x + z)(y + z) - x3 - y3 - z3

= 3(x + y)(x + z)(y + z)

A = 2x2 + 10x - 1

\(=2\left(x^2+5x+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

\(MinA=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)

 

30 tháng 10 2016

câu2

(x+y+z)3 - x3 - y3 - z3 =(x+y)3 +z3+ 3(x+y+z)(x+y)z -x3- y3 -z3

= x3 +y3 +3xy(x+y) + z3 +3(x+y+z)(x+y)z -x3 -y3 - z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)(y+z)(x+z)

vì ko có time nên mk làm hơi tắt