\(A=8n^2-4n+1\) và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(8n^2-4n+1⋮2n+1\)

\(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;2;-3\right\}\)

b: Ta có: \(3n^3+8n^2+15n⋮3n-1\)

\(\Leftrightarrow3n^3-n^2+9n^2-3n+18n-6+6⋮3n-1\)

\(\Leftrightarrow3n-1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;1\right\}\)

15 tháng 11 2018

\(\text{a.Ta có :}\)

\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

\(\text{Ta lại có :}\)

\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)

\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

17 tháng 7 2018

a)   \(A=12n^2-5n-25\)

\(=12n^2+15n-20n-25\)

\(=3n\left(4n+5\right)-5\left(4n+5\right)\)

\(=\left(3n-5\right)\left(4n+5\right)\)

Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó

nên  A là số nguyên tố thì:   \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)

do n là số tự nhiên nên \(n=2\)

thử lại:  n=2  thì  A = 13 là số nguyên tố

Vậy n = 2

17 tháng 7 2018

b)  \(B=8n^2+10n+3\)

\(=8n+6n+4n+3\)

\(=2n\left(4n+3\right)+\left(4n+3\right)\)

\(=\left(2n+1\right)\left(4n+3\right)\)

Để B là số nguyên tố thì:   \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)

Do n là số tự nhiên nên  n = 0

Thử lại: \(n=0\)thì    \(B=3\)là số nguyên tố

Vậy  \(n=0\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

Ta có:

\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)

\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)

Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)

\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

Do đó:

\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)

b)

Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)

Đặt \(A=x^{3m+1}+x^{3n+2}+1\)

\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)

\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)

Khai triển:

\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)

(đặt là T vì phần biểu thức đó không quan trọng)

\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)

Tương tự, \((x^3)^n-1\vdots x^2+x+1\)

Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)

Ta có đpcm.

11 tháng 1 2016

Vì A, B, C thuộc Z nên tử chia hết cho mẫu, đặt phép chia ra

Bài 2: 

a: Để A là số nguyên thì \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)(do n là số nguyên)

b: Để B là số nguyên thì \(n^3-4n^2+5n-1⋮n-3\)

\(\Leftrightarrow n^3-3n^2-n^2+3n+2n-6+5⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)