\(P=\frac{2}{6-m}\) có giá trị lớn n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

a) P có giá trị lớn nhất <=> 6 - m là số nguyên dương nhỏ nhất => 6 - m = 1 => m = 6 - 1 = 5

Vậy....

b) \(Q=\frac{-\left(n-3\right)+5}{n-3}=-1+\frac{5}{n-3}\)

Để Q nhỏ nhất thì \(\frac{5}{n-3}\) nhỏ nhất <=> n - 3 là số nguyên âm lớn nhất <=> n - 3 = -1 <=> n = -1 + 3 = 2

Vậy.....

11 tháng 10 2015

a, P có GTLN=> 6-m là số nguyên dương nhỏ nhất =>6-m=1=>m=6-1=5

Vậy m=5

b,\(Q=\frac{-\left(n-3\right)+5}{n-3}=-1+\frac{5}{n-3}\)

Để Q nhỏ nhất thì \(\frac{5}{n-3}\)nhỏ nhất => n-3 là số nguyên âm lớn nhất => n-3=-1=> n=-1+3+2

Vậy n = 2

31 tháng 5 2018

1/ Ta có: \(P=\frac{2}{6-m}\)\(\le2\left(\forall m\in Z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow6-m=1\Rightarrow m=5\).

Vậy Max P =2 khi m = 5.

2/ Ta có: \(Q=\frac{8-n}{n-3}\ge0\left(\forall n\in Z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow8-n=0\Rightarrow n=8.\)

Vậy Min Q = 0 khi n = 8.

Chúc bn hc tốt!^_^.

Nhớ kb và cho tớ nhé mọi người!

1 tháng 6 2018

1/ta có :2/6-m max

suy ra:6-m>0,6-m min 

suy ra:6-m=1

suy ra: m=5

Vậy ...

2 tháng 2 2017

a) P lớn nhất => P >0

cần 6-m nhỏ nhất lớn hơn 0

m nguyên => m=5

Pmax=2

b)

Q đạt nhỏ nhất => Q<0

\(Q=\frac{5-\left(n-3\right)}{n-3}=-1+\frac{5}{n-3}\)

\(\frac{5}{n-3}\) đạt giá trị (-) nhỏ nhất=> n=2

Qmin=-1-5=-6

8 tháng 7 2021

Để A đạt GTLN 

=> 6 - x  đạt GTNN 

=> 6 - x = 1 (Vì x nguyên) (nếu 6 - x < 0 thì A < 0 => A không đạt GTLN) 

=> x = 5

Vậy x = 5 thì A đạt GTLN

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)