K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-7x+2=x^2-2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{41}{4}\)

\(=\left(x-\dfrac{7}{2}\right)^2-\dfrac{41}{4}>=-\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{7}{2}=0\)

=>\(x=\dfrac{7}{2}\)

\(x^2-12x+5\)

\(=x^2-12x+36-31=\left(x-6\right)^2-31>=-31\forall x\)

Dấu '=' xảy ra khi x-6=0

=>x=6

13 tháng 8 2024

`x^2 - 7x + 2`

`= x^2 - 2.x . 7/2 + (7/2)^2 - 41/4`

`= (x - 7/2)^2 - 41/4`

Do `(x - 7/2)^2 >= 0=>  (x - 7/2)^2 - 41/4 >= - 41/4`

Dấu = xảy ra khi: 

`x - 7/2 = 0`

`<=> x = 7/2`

Vậy ...

-----------------------

`x^2 - 12x + 5`

`= x^2 - 2.x.6 + 6^2 - 31`

`= (x-6)^2 - 31`

Do `(x-6)^2 >= 0 =>  (x-6)^2 - 31>= -31`

Dấu = có khi: 

`x - 6 = 0`

`<=> x = 6`

Vậy .... (không có max )

20 tháng 8 2016

Ta có 3x2+y2+2xy+4=7x+3y

<=> (x+ 2xy + y) - 3(x + y)  + 2(x- 2x +1) + 2 = 0 

<=> P- 3P + 9/4 + 2(x - 1)- 1/4 = 0

<=> (P - 3/2)= 1/4 - 2(x - 1)2

<=> P - 3/2 = 1/4 - 2(x - 1) hoặc P - 3/2 = 2(x - 1)- 1/4

Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha

4 tháng 12 2017

Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha

chúc cậu hok tốt @_@

20 tháng 4 2017

Ta có: \(7x^2+8xy+7y^2=10\)

\(\Rightarrow4x^2+8xy+4y^2+3x^2+3y^2=10\)

\(\Rightarrow4\left(x+y\right)^2+3\left(x^2+y^2\right)=10\)

\(\Rightarrow3\left(x^2+y^2\right)=10-4\left(x+y\right)^2\)

\(\Rightarrow S_{Max}=x^2+y^2=\dfrac{10-4\left(x+y\right)^2}{3}\le\dfrac{10}{3}\)

Đẳng thức xảy ra khi \(x=-y\)

Ta có: \(x^2+y^2\ge2xy\forall x,y\) đẳng thức xảy ra khi \(x=y\)

Thay vào \(7x^2+8xy+7y^2=10\) ta có:

\(7x^2+8x^2+7x^2=10\)

\(\Rightarrow22x^2=10\Rightarrow x^2=\dfrac{10}{22}\Rightarrow y^2=\dfrac{10}{22}\)

Khi đó \(S_{Min}=\dfrac{10}{22}+\dfrac{10}{22}=\dfrac{10}{11}\)

Đẳng thức xảy ra khi \(x=y\)

29 tháng 7 2019

\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)

Vậy \(A_{min}=-13\Leftrightarrow x=3\)

29 tháng 7 2019

\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

26 tháng 6 2018

\(A=4x^2-12x+11\)

\(A=\left(2x\right)^2-2.2x.3+3^2+2\)

\(A=\left(2x-3\right)^2+2\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)

\(B=x^2-2x+y^2+4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Ta có:  \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)

\(A=-x^2-6x+1\)

\(\Rightarrow-A=x^2+6x-1\)

\(-A=\left(x^2+2.3x+3^2\right)-10\)

\(-A=\left(x+3\right)^2-10\)

\(\Rightarrow A=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amax=10\(\Leftrightarrow\)x= -3

Sửa đề:

\(B=-2x^2-8x-6\)

\(B=-2.\left(x^2+2.2x+2^2\right)+2\)

\(B=-2.\left(x+2\right)^2+2\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)

Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Bmax=2\(\Leftrightarrow x=-2\)

26 tháng 6 2018

Đề phải là tìm min mới đúng

a, A=4x2-12x+11

=(4x2-12x+9)+2

=(2x-3)2+2

Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2

Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2

Vậy Amin = 2 khi x=3/2

b, B=x2-2x+y2+4y+6

=(x2-2x+1)+(y2+4y+4)+1

=(x-1)2+(y+2)2+1

Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1,y=-2

Vậy Bmin = 1 khi x=1,y=-2

27 tháng 10 2022

a: \(=2\left(x^2+6x+4\right)\)

\(=2\left(x^2+6x+9-5\right)\)

\(=2\left(x+3\right)^2-10>=-10\)

Dấu = xảy ra khi x=-3

b: \(=-\left(x^2-10x-3\right)\)

\(=-\left(x^2-10x+25-28\right)\)

\(=-\left(x-5\right)^2+28< =28\)

Dấu = xảy ra khi x=5

18 tháng 8 2015

a)x2+2x+4+1=(x+1)2+1

ma (x+1)2 >0

nen (x+1)2+1>1

vay x2+2x+5 min la 1 khi x=-1

 

1: \(=\left(x+5\right)\left(x-4\right)\)

2: \(=\left(x-5\right)\left(x+4\right)\)

3: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)

4: \(=3x^2+3x-2x-2\)

\(=\left(x+1\right)\left(3x-2\right)\)

5: \(4x^2-7x-2\)

\(=4x^2-8x+x-2=\left(x-2\right)\left(4x+1\right)\)

6: \(=4x^2+8x-3x-6=\left(x+2\right)\left(4x-3\right)\)