Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)
\(\Rightarrow m< \frac{1}{2}\)
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)
Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)
\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)
\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)
Vậy \(m=-4-\sqrt{23}\)
Có : đenta = (-m)2 -4(m-1) = m2 -4m + 4 = (m-2)2 >= 0
Áp dụng hệ thức Vi-ét, ta có : x1 + x2 = m
x1.x2 = m-1
Có:\(\frac{1}{x_{ }_{ }1}+\frac{1}{x2}=\frac{x1.x2}{2011}\)
<=> \(\frac{x1+x2}{x1.x2}=\frac{x1.x2}{2011}\)
<=> \(\frac{m}{m-1}=\frac{m-1}{2011}\)
<=> 2011m = (m-1)2
<=> 2011m = m2-2m + 1
<=> m2-2013m + 1 =0
Giải pt ra
Bạn quy đồng cái đk cho trước lên,,rồi thay x1+x2 và x1.x2 vào,,,, OK???
Bạn tự xét del ta nha
Theo Vi ét , ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1\cdot x_2=m\end{cases}}\)
\(|x_1-x_2|=3\Leftrightarrow x_1^2-2x_1x_2+x_2^2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
\(\Rightarrow25-4m=9\Rightarrow4m=16\Rightarrow m=4\)
Chắc vậy đó bạn
\(x^2-2\left(m-1\right)x-3-m=0\) \(\left(1\right)\)
từ \(\left(1\right)\) ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)
\(\Delta'=m^2-2m+1+m+3\)
\(\Delta'=m^2-m+4\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)