Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x\(\ne\)1. Đưa phương trình về dạng (1-m)x=2
Nếu m=1 thì PT vô nghiệm
Nếu m\(\ne\)1 thì \(x=\frac{2}{1-m}\)
Giải điều kiện x khác 1 và m khác -1
Vậy nghiệm của phương trình \(x=\frac{2}{1-m}\left(m\ne\pm1\right)\)
Phương trình có nghiệm \(\Leftrightarrow\orbr{\begin{cases}m< 1\\m\ne-1\end{cases}}\)
a, 2x-1 thuộc ước của 2,rồi giải ra
b,c tương tự
d\(\frac{x^2-64-123}{x+8}=\frac{\left(x+8\right)\left(x-8\right)-123}{x+8}=x-8-\frac{123}{X+8}\) .........rồi làm tương tự như câu a,,,,,,,,,,,,còn câu e cũng gần giống câu d
\(3-m=\frac{10}{x+2}\)
\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)
=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}
TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)
bài 3:
\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)
\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)
Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên
Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)
Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |
\(\frac{m+1}{x-1}=1-m\)
\(\Leftrightarrow m+1=\left(1-m\right)\left(x-1\right)\)
\(\Leftrightarrow m+1=x-1-mx+m\)
\(\Leftrightarrow x-mx=2\)
\(\Leftrightarrow x\left(1-m\right)=2\Leftrightarrow x=\frac{2}{1-m}\)
Để x dương thì \(\frac{2}{1-m}>0\Leftrightarrow m< 1\)
Vậy m < 1
ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)
\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1)
=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0
<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0
< => ( 2m + 5 ) x + 2 = 0 (2)
TH1: 2m + 5 = 0 <=> m = -5/2
Khi đó (2) trở thành: 0x + 2 = 0 => phương trình vô nghiệm với mọi x
=> m = -5/2 thỏa mãn
TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2
khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)
( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1
<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)
Giải: \(-\frac{2}{2m+5}=-m-1\)
<=> 2 = ( m + 1 ) ( 2m + 5 )
<=> 2m^2 +7m +3= 0
<=> m = -1/2 hoặc m = -3 (tm m khác -5/2)
Giải: \(-\frac{2}{2m+5}=2\)
<=> 2m + 5 = - 1 <=> m = - 3 (tm)
Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.
Quy đồng nha :
\(A=\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)
\(=\frac{\left(-m+1\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+3\right)\left(m+8\right)}\)
\(=\frac{-\left(m-1\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+3\right)\left(m+8\right)}\)
\(=\frac{\left(m-1\right)\left(m+8-m-3\right)}{\left(m+3\right)\left(m+8\right)}\)
\(=\frac{5\left(m-1\right)}{m^2+11m+24}\)
\(=\frac{5m-5}{m^2+2.m.\frac{11}{2}+\frac{121}{4}+\frac{25}{4}}=P\)
Để A dương thì P phải dương :
Ta thấy : \(m^2+2.m.\frac{11}{2}+\frac{121}{4}+\frac{25}{4}=\left(m+\frac{11}{2}\right)^2+\frac{25}{4}>0\forall m\)
\(\Rightarrow5m-5>0\Rightarrow m=1\)
Vậy với giá trị m thì A nhận giá trị dương
\(\Rightarrow m+1=\left(1-m\right)\left(x-1\right)\Leftrightarrow m+1=x-1-mx+m\)
\(\Leftrightarrow2=x-mx\Leftrightarrow x\left(1-m\right)=2\)
\(\Rightarrow x=\frac{2}{1-m}\)
Để x > 0 và x khác 1 thì:
\(\hept{\begin{cases}\frac{2}{1-m}>0\\\frac{2}{1-m}\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}1-m>0\\1-m\ne2\end{cases}\Leftrightarrow}\hept{\begin{cases}m< 1\\m\ne-1\end{cases}}\)
mơn nhé