K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

\(5-\left(2+3x\right)^4\)

Ta có : \(\left(2+3x\right)^4\le0\)

\(\Rightarrow5-\left(2+3x\right)^4\le5\)

Dấu " = " xảy ra khi và chỉ khi \(\left(2+3x\right)^4=0\)

                                                    \(\left(2+3x\right)=0\)

                                                       \(3x=-2\)

                                                         \(x=-\frac{2}{3}\)

Vậy \(Max\) của \(5-\left(2x+3\right)^4\) là \(5\) xảy ra khi và chỉ khi \(x=-\frac{2}{3}\)

8 tháng 9 2016

GTLN là 5

7 tháng 9 2016

1) Ta có: \(-1+\left(8-4x\right)^2\ge-1\)

Dấu "=" xảy ra khi và chỉ khi (8 - 4x)2 = 0 => 8 - 4x = 0 => 4x = 8 => x = 2

Vậy GTNN của -1 + (8 - 4x)2 là -1 khi và chỉ khi x = 2

2) Ta có: \(5-\left(2+3x\right)^4\le5\)

Dấu ''='' xảy ra khi và chỉ khi (2 + 3x)4 = 0 => 2 + 3x = 0 => 3x = -2 => x = -2/3

Vậy GTLN của 5 - (2 + 3x)4 là 5 khi và chỉ khi x = -2/3

7 tháng 9 2016

(8-4x)2 >=0 nên -1+(8-4x)2 >=-1 nên GTNN: -1

Tương tự (2+3x)4 >=0 nên GTLN: 5

7 tháng 9 2016

min=-1 khi x=2

max=5 khi x=-6

7 tháng 9 2016

cho cách giải luôn đi kê hà my

24 tháng 10 2017

mk ko bt 123

23 tháng 10 2015

a, Để A có GTNN thì |2.x-1/3| phải có GTNN 

\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6

​A có GTNN =107 khi x=1/6

b,(3x-5)^20 với mọi x 

Để A có GTNN ​(3x-5)^2 phải có GTNN 

\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3

B co GTNN =-2015 khi x=5/3

​c,Để C có GTLN khi |2x-3| phải có GTNN 

\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5

C co GTLN =1 khi x=1,5

đ,(4-2x)^2 ​0 với mọi x

Để D có GTLN khi (4-2x)^2 phải có GTNN 

\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2

​D có GTLN =2016 khi x=2


 

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

24 tháng 8 2016

1/ Ta có: \(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow A=14-\left(x+2\right)^2=14+\left[-\left(x+2\right)^2\right]\le14\)

Đẳng thức xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy giá trị lớn nhất của A là 14 khi x = -2.

2/ Ta có: \(\left|3x+5\right|\ge0\Rightarrow-\left|3x+5\right|\le0\Rightarrow B=-\left|3x+5\right|-7\le-7\)

Đẳng thức xảy ra khi: \(3x+5=0\Rightarrow3x=-5\Rightarrow x=\frac{-5}{3}\)

Vậy giá trị lớn nhất của B là -7 khi \(x=\frac{-5}{3}\).

2 tháng 1 2019

1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)

Vậy đề sai ~v  (hay là tui làm sai ta)

2 tháng 1 2019

1b) \(B=3\left|1-2x\right|-5\ge0-5=-5\)  (do \(\left|1-2x\right|\ge0\forall x\))

Dấu "=" xảy ra khi \(\left|1-2x\right|=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy \(B_{min}=-5\Leftrightarrow x=\frac{1}{2}\)