Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị lớn nhất của hàm số sau trên [-1; 1]
A. max y = 0 B. max y = 2
C. max y = 4 D. max y = 2
Tập xác định -1 ≤ x ≤ 1, do đó 1 – x ≤ 2, 1 + x ≤ 2 ⇒ ( 1 - x ) + ( 1 + x ) ≤ 2 2 < 4 nên C sai; Ngoài ra vì 0 và 2 đều nhỏ hơn 2 nên chỉ cần xét xem 2 có phải là giá trị của hàm số không, dễ thấy khi x = 0 thì y = 2. Vậy max y = 2
Đáp án: B
\(x^2+y^2=xy+1\Rightarrow\left(x^2+y^2\right)^2=\left(xy+1\right)^2\)do hai vế lớn hơn hoặc bằng 0
\(\Rightarrow x^4+y^4+2x^2y^2=x^2y^2+2xy+1\)
\(\Rightarrow x^4+y^4-x^2y^2=-2x^2y^2+2xy+1\)
\(\Rightarrow x^4+y^4-x^2y^2=-2\left(xy+\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)
\(\Rightarrow\left(x^4+y^4-x^2y^2\right)_{max}=\frac{3}{2}\)đạt được khi \(xy=-\frac{1}{2}\)
Lời giải:
Đặt biểu thức là $A$
Ta có:
\(A=2(x^3+y^3)-3xy\)
\(=2(x+y)(x^2-xy+y^2)-3xy\)
\(=2(x+y)(2-xy)-2xy\)
Có: \(xy=\frac{(x+y)^2-(x^2+y^2)}{2}=\frac{(x+y)^2-2}{2}\)
Khi đó đặt \(x+y=a\Rightarrow A=2a(2-\frac{a^2-2}{2})-3.\frac{a^2-2}{2}\)
\(\Leftrightarrow A=6a-a^3-\frac{3}{2}a^2+3\)
Thấy rằng \((x-y)^2\geq 0\Leftrightarrow x^2+y^2\geq 2xy\)
\(\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2\Leftrightarrow a^2\leq 4\Leftrightarrow -2\leq a\leq 2\)
Đến đây, ta có thể xét đạo hàm, lập bảng biến thiên để tìm max với \(a\in [-2;2]\)
Hoặc biến đổi theo cách sau:
\(2A=12a-2a^3-3a^2+6\)
\(2A=2(3a-a^3-2)+(6a-3a^2-3)+13\)
\(=-2(a-1)^2(a+2)-3(a-1)^2+13\)
\(=-(a-1)^2(2a+7)+13\)
Có: \(\left\{\begin{matrix} (a-1)^2\geq 0\\ a\geq -2\Rightarrow -(2a+7)< 0\end{matrix}\right.\Rightarrow -(a-1)^2(2a+7)\leq 0\)
\(\Rightarrow 2A\leq 13\Leftrightarrow A\leq \frac{13}{2}\)
Vậy \(A_{\max}=\frac{13}{2}\Leftrightarrow a=1\)
Ta có:
\(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\)
\(\Leftrightarrow xy\ge1\)
Theo đề bài thì
\(\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{y^4+x^2+2yx^2}\le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)
Ta có:
P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)
P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)
=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)
Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)
Ta có :
P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)
Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)
<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)
=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)
\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)
Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...
Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)
<=> x=-y=\(\dfrac{1}{\sqrt{3}}\)
\(x^4+y^4+\dfrac{1}{xy}=xy+2\)
\(\Leftrightarrow\left(x^2-y^2\right)^2=xy-\dfrac{1}{xy}+2-2x^2y^2\ge0\)
Đặt \(xy=a\)
\(\Rightarrow-2a^3+a^2+2a-1\ge0\)
\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\left(1-2a\right)\ge0\)
Ta có a > 0
\(\Rightarrow\left(a-1\right)\left(2a-1\right)\le0\)
\(\Rightarrow\dfrac{1}{2}\le a\le1\) \(\Rightarrow.......\)
\(x^2+y^2\le2x+4y\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2\le5\)
Trong hệ tọa độ \(Oxy\)vẽ đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=5\)(C) và đường thẳng \(2x+y-F=0\)(d)
\(F=2x+y\)đạt GTNN hay GTLN khi (d) là tiếp tuyến của (C).
\(I\left(1,2\right)\)là tâm của (C), \(R=\sqrt{5}\)là bán kính của (C).
\(d\left(I,d\right)=\frac{\left|2.1+2-F\right|}{\sqrt{2^2+1^2}}=\frac{\left|F-4\right|}{\sqrt{5}}=\sqrt{5}\Leftrightarrow\orbr{\begin{cases}F=-1\\F=9\end{cases}}\).
Vậy \(minF=-1,maxF=9\).
\(x+y=4\Rightarrow y=4-x\)
\(P=2x^2+\left(4-x\right)^2-3x+4-x\)
\(P=3x^2-12x+20\)
Do \(x+y=4\Rightarrow0\le x\le4\)
Xét \(P=f\left(x\right)=3x^2-12x+20\) trên \(\left[0;4\right]\)
\(P\left(0\right)=20\) ; \(P\left(4\right)=20\); \(P\left(-\frac{b}{2a}\right)=P\left(2\right)=8\)
\(\Rightarrow P_{max}=20\) khi \(\left(x;y\right)=\left(0;4\right);\left(4;0\right)\)
\(P_{min}=8\) khi \(x=y=2\)
Dễ dàng nhận thấy \(y\ge0\)
Đặt \(\sqrt{3-x^2}=t\Rightarrow x^2=3-t^2\) \(\left(0\le t\le\sqrt{3}\right)\)
\(y=t\left(3-t^2\right)=3t-t^3=2-\left(t+2\right)\left(t-1\right)^2\le2\)
Dấu "=" xảy ra khi \(t=1\Leftrightarrow x=\pm\sqrt{2}\)
Ta có: y = − 2 x 2 + 4 x = − 2 ( x − 2 ) 2 + 2 2 ≤ 2 2
⇒ y max = 2 2