\(\dfrac{x^2+15}{x^2+3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

\(A=3,7+\left|4,3-x\right|\)

\(\Rightarrow3,7+\left|4,3-x\right|\ge3,7;P\ge3,7\)

Vậy \(GTNN\left(P\right)=3,7\)nếu \(\left|4,3-x\right|=0\)

                                                  \(4,3-x=0\)

                                                  \(x=4,3\)

<=> x=4,3

17 tháng 12 2017

Gtnn là 5

9 tháng 8 2018

a) Ta có : | a + 1 | luôn lớn hơn hoặc bằng 0

=> | a + 1 | + 5 luôn lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> a + 1 = 0

                           => a = -1

Vậy, A min = 5 khi và chỉ khi a = -1

9 tháng 8 2018

Ta có: \(\left|a+1\right|\ge0\forall a\)

\(\Rightarrow\left|a+1\right|+5\ge5\forall x\)

Dấu ' = ' xảy ra \(\Leftrightarrow\left|a+1\right|=0\Leftrightarrow a=-1\)

 Vậy GTNN của biểu thức \(\left|a+1\right|+5\)là \(5\Leftrightarrow a=-1\)

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

20 tháng 4 2018

\(A=\frac{x}{\left(x+4\right)^2}\)

Đặt  \(x+4=y\Leftrightarrow x=y-4\)       \(\left(y\ne0\right)\)

\(A=\frac{y-4}{y^2}\)

\(A=\frac{y}{y^2}-\frac{4}{y^2}\)

\(-A=\left(\frac{2}{y}\right)^2-\frac{1}{y}\)

\(-A=\left[\left(\frac{2}{y}\right)^2-\frac{1}{y}+\left(\frac{1}{4}\right)^2\right]-\frac{1}{16}\)

\(-A=\left(\frac{2}{y}-\frac{1}{4}\right)^2-\frac{1}{16}\)

Do : \(\left(\frac{2}{y}-\frac{1}{4}\right)^2\ge0\forall y\in R\)

\(\Rightarrow-A\ge-\frac{1}{16}\)

\(\Leftrightarrow A\le\frac{1}{16}\)

Dấu " = " xảy ra khi :

\(\frac{2}{y}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{2}{y}=\frac{1}{4}\)

\(\Leftrightarrow y=8\)

Lại có : \(x=y-4\Rightarrow x=4\)

Vậy \(A_{Max}=\frac{1}{16}\Leftrightarrow x=4\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

24 tháng 3 2019

\(A=|x+1|+5\ge5\forall x\)

=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)

\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2+3\ge3\forall x\)

Min x2 + 3 = 3 tại x = 0

Khi đó: Max B = 1+ 12/3 = 5 tại x = 0

=.= hk tốt!!

|x+1 lớn hơn hoặc bằng 0 

=> |x+1|+5 lớn hơn hoặc bằng 5

Dấu = xảy ra khi x+1=0 <=> x=-1

Vậy Min A = 5 khi x=-1