\([\)0;3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

Lập bảng thay các giá trị nguyên trong khoảng vào hàm rồi calc x:

x=0 ra kq:-504

x=1 ra kq:-515(GTNN)

x=2 ra kq:-472

x=3 ra kq:-339(GTLN)

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

\(\hept{\begin{cases}a+b+c=4\\a^2+b^2+c^2=6\end{cases}}\)

\(b^2+c^2=6-a^2\Rightarrow\left(b+c\right)^2-2bc=6-a^2\)

\(\Rightarrow2bc=\frac{\left(b+c\right)^2-6+a^2}{2}\)

\(=\frac{\left(4-a\right)^2-6+a^2}{2}\left(Do:a+b+c=4\right)\)

\(=\frac{2a^2-8a+10}{2}=a^2-4a+5\)

\(\Rightarrow P=a^3+bc\left(b+c\right)=a^3+\left(a^2-4a+5\right)\left(4-a\right)\left(Do:a+b+c=4\right)\)

\(=a^3+4a^2-16a+20-a^3+4a^2-5a\)

\(=8a^2-21a+20\)

\(=8\left(a^2-2.\frac{21}{16}a+\frac{441}{256}\right)+\frac{199}{32}\)

\(=8\left(a-\frac{21}{16}\right)^2+\frac{119}{32}\)

 .............................................................

3 tháng 2 2017

X=1

3 tháng 2 2017

giải ra cho mình với

24 tháng 5 2020

\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)

Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)

\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)

=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)

\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)

\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)

\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)

Vậy GTNN của P = 2.