\(P=5^{2x}+5^y\) biết rằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

Do  \(x+y=1\Rightarrow y=1-x\) nên \(P=5^{2x}+5^{1-x}=5^{2x}+\frac{5}{5^x}\)

Đặt \(t=5^x\) thì 1\(\le t\le\)5 ( do \(0\le x\le1\))

Xét hàm số \(f\left(t\right)=t^2+\frac{5}{t}\) với \(1\le t\le5\)

Ta có \(f'\left(t\right)=2t-\frac{5}{t^2}=\frac{2t^3-5}{t^2}\)

Do đó có bảng biến thiên

t1                            \(^3\sqrt{\frac{5}{2}}\)                                         5
f'(t)                -                0                       +
f(t)

6                                                                               26

                               \(3\sqrt[3]{\frac{25}{4}}\)

Vậy min P=min f(t) = \(f\left(\sqrt[3]{\frac{5}{2}}\right)\)=\(3\sqrt[3]{\frac{25}{4}}\)

        max P =max f(t) =f(5)=26

NV
17 tháng 8 2020

\(5^{x+3y}+5^{xy+1}+xy+1+x+3y=\frac{1}{5^{xy+1}}+\frac{1}{5^{x+3y}}\)

\(\Leftrightarrow5^{x+3y}-5^{-x-3y}+x+3y=5^{-xy-1}-5^{-\left(-xy-1\right)}+\left(-xy-1\right)\)

Xét hàm \(f\left(t\right)=5^t-\frac{1}{5^t}+t\Rightarrow f'\left(t\right)=5^t.ln5+\frac{ln5}{5^t}+1>0\)

\(\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow x+3y=-xy-1\)

\(\Rightarrow y\left(x+3\right)=-x-1\)

\(\Rightarrow y=\frac{-x-1}{x+3}\)

\(\Rightarrow T=f\left(x\right)=x-\frac{2x+2}{x+3}+1\)

\(f'\left(x\right)=\frac{\left(x+1\right)\left(x+5\right)}{\left(x+3\right)^2}>0;\forall x\ge0\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=\frac{1}{3}\Rightarrow m=\frac{1}{3}\)

18 tháng 4 2016

Đặt \(x+y=t,t\in\left[-2;2\right]\)

Biến đổi được \(P=-2t^3+6t\)

Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)

Lập bảng biến thiên

Ta có \(P_{Max}=4\) khi t=1

          \(P_{Min}=-4\) khi t= -1

 

 

16 tháng 8 2016

bn ơi câu a t chưa làm chưa biết nhưng câu b chắc chắn có Max tại x=-3 nhé !   Nếu bn chỉ tìm ra Min là chưa đủ 

 

22 tháng 4 2017

\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)

f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến

Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3

f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng

\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)

8 tháng 5 2016

Ta có :

\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)

Theo bất đẳng thức Cô-si ta có :

\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)

Vì \(x+y+z=1\) nên có 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)

Thế vào (1) ta có :

\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)

Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)

 

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

16 tháng 5 2016

Ta có : \(f'\left(x\right)=2x+\frac{2}{1-2x}=\frac{-4x^2+2x+2}{1-2x}=0\Leftrightarrow-4x^2+2x+2=0\)

                                                                   \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\in\left[-2;0\right]\\x=1\notin\left[-2;0\right]\end{array}\right.\)

Mà :

    \(\begin{cases}f\left(-2\right)=4-\ln5;x=-2\\f\left(-\frac{1}{2}\right)=\frac{1}{4}-\ln2=\frac{1-4\ln2}{4};x=-\frac{1}{2}\\\end{cases}\)

19 tháng 9 2019

Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:

\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)

(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:

\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:

\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)

\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)

Vậy...

P/s: check xem em có tính sai chỗ nào không:v

19 tháng 9 2019

Dấu "=" xảy ra khi nào vậy Khang ?